AC_PREREQ(2.63) # # (C) 2006 by Argonne National Laboratory. # See COPYRIGHT in top-level directory. # dnl Process this file with autoconf to produce a configure script. dnl dnl aclocal_cache.m4, included by sowing/confdb/aclocal.m4, fixes dnl bugs in autoconf caching. dnl dnl This is a large configure script and it is important to keep it dnl clearly organized. In addition, this script must coordinate with dnl the other modules that can be used to construct MPICH, such as dnl the communication device and the process manager. Each of these dnl may have special features or limitations that other modules or dnl this configure may need to take into account. To handle this, there dnl are xx major steps in this configure script: dnl dnl 1. Identify major modules and source any prerequisite scripts dnl 2. Determine compiler characteristics dnl 3. Setup and configure the other modules dnl 4. Determine MPI features and characteristics (such as datatype values) dnl dnl Each of these is described in more detail below. dnl dnl 1. Identify the modules (most are specified by dnl --with-=instance, dnl for example, --with-pm=mpd or --with-device=ch3:nemesis). dnl For each module, source the file mpichprereq if present (in the dnl module's top-level directory). This dnl must be a bourne (sh) shell script; it can access any of the variables dnl in the configure script. In addition, there are a few variables that dnl are defined and provided to allow the modules to communicate their dnl needs or limitations to the other modules. These are: dnl MPID_MAX_THREAD_LEVEL - thread level supported by device. dnl if unset, is MPI_THREAD_FUNNELED dnl MPID_NO_LONG_LONG - if yes, the device does not support the dnl long long integer type dnl MPID_NO_LONG_DOUBLE - if yes, the device does not support the dnl long double type dnl MPID_PM_NAMESERVER - if set, provides the name of the nameserver dnl that the process manager supports. dnl This name server will be used if the dnl default name server is selected. dnl MPID_NO_PM - If yes, the device does not require any dnl PM implementation. dnl MPID_NO_PMI - If yes, the device does not require any dnl PMI implementation. dnl EXTRA_STATUS_DECL - Any extra declarations that the device dnl needs added to the definition of MPI_Status. dnl MPID_MAX_PROCESSOR_NAME - The maximum number of character in a processor dnl name. If not set, 128 will be used. dnl MPID_MAX_ERROR_STRING - The maximum number of character in an error dnl string. If not set, 1024 will be used. dnl MPID_LIBTOOL_STATIC_FLAG - The static compilation flag to use dnl for the example executables within dnl mpich. If not set, -static will be dnl used. dnl PMI_REQUIRES_READABLE_TOKENS - if yes, define the C-preprocessor dnl value USE_HUMAN_READABLE_TOKENS, which is dnl used in src/include/mpimem.h to define token dnl separators used in src/util/mem/argstr.c dnl PM_REQUIRES_PMI - if set, provides the name of the PMI dnl interface implementation. If not set, dnl the "simple" PMI implementation is used. dnl A process manager that needs a particular dnl process manager should check that this is dnl not set to an incompatible value. dnl MPID_NO_SPAWN - if yes, the device does not support the dnl dynamic process routines (spawn, connect dnl attach, join, plus port and publish dnl routines). The major effect of this dnl is to let the test codes know that dnl spawn is not implemented. dnl MPID_NO_RMA - if yes, the device does not support the dnl MPI RMA routines (MPI_Win_create and dnl MPI_Put etc.). The major effect of this dnl is to let the test codes know that dnl RMA is not implemented. dnl dnl Note that the meanings of these variables are defined so that an dnl undefined value gives the default. This makes it easy to expand dnl the set of such variables, since only modules that need the new dnl variable will need to be changed. dnl dnl 2. Determine compiler characteristics dnl Here is where features of the compilers are determined, including dnl support for shared libraries and sizes of the basic datatype types. dnl dnl 3. Setup and configure the other modules dnl Before each module configure is executed, the script setup_ dnl is run if present. This is a bourne (sh) shell script and may dnl access configure variables. It should not make any changes to the dnl compiler name or flags (e.g., do not add -D_XOPEN_SOURCE to CFLAGS here, dnl because that may invalidate the determination of the compiler dnl characteristics in the prior step). dnl dnl 4. Determine MPI features dnl dnl dnl Special environment variables dnl To let other scripts and in particular the configure in test/mpi dnl know that they are being invoked from within the MPICH configure, dnl the following environment variables are set and exported: dnl FROM_MPICH dnl MPICH_ENABLE_F77 dnl MPICH_ENABLE_FC dnl MPICH_ENABLE_CXX dnl dnl Note that no executable statements are allowed (and any are silently dnl dropped) before AC_INIT. m4_include([maint/version.m4]) dnl 2nd arg is intentionally underquoted AC_INIT([MPICH], MPICH_VERSION_m4, [mpich-discuss@mcs.anl.gov], [mpich], [http://www.mcs.anl.gov/research/projects/mpich2/]) if test "x$prefix" != "xNONE" && test -d "$prefix"; then if test "x`(cd \"$prefix\"; echo \"$PWD\")`" = "x`(cd \"$srcdir\"; echo \"$PWD\")`" ||\ test "x`(cd \"$prefix\"; echo \"$PWD\")`" = "x$PWD" ; then AC_MSG_ERROR([The install directory (--prefix=) cannot be the same as the build or src directory.]) fi fi CONFIGURE_ARGS_CLEAN=`echo $* | tr '"' ' '` AC_SUBST(CONFIGURE_ARGS_CLEAN) # these values come from the m4_include above MPICH_VERSION=MPICH_VERSION_m4 AC_SUBST([MPICH_VERSION]) MPICH_RELEASE_DATE="MPICH_RELEASE_DATE_m4" AC_SUBST([MPICH_RELEASE_DATE]) libmpich_so_version="libmpich_so_version_m4" AC_SUBST([libmpich_so_version]) if test -z "$MPICH_VERSION" ; then AC_MSG_ERROR([MPICH_VERSION is empty, check maint/version.m4 for errors]) fi # Produce a numeric version assuming the following format: # Version: [MAJ].[MIN].[REV][EXT][EXT_NUMBER] # Example: 1.0.7rc1 has # MAJ = 1 # MIN = 0 # REV = 7 # EXT = rc # EXT_NUMBER = 1 # # Converting to numeric version will convert EXT to a format number: # ALPHA (a) = 0 # BETA (b) = 1 # RC (rc) = 2 # PATCH (p) = 3 # Regular releases are treated as patch 0 # # Numeric version will have 1 digit for MAJ, 2 digits for MIN, # 2 digits for REV, 1 digit for EXT and 2 digits for EXT_NUMBER. changequote(<<,>>) V1=`expr $MPICH_VERSION : '\([0-9]*\)\.[0-9]*\.*[0-9]*[a-zA-Z]*[0-9]*'` V2=`expr $MPICH_VERSION : '[0-9]*\.\([0-9]*\)\.*[0-9]*[a-zA-Z]*[0-9]*'` V3=`expr $MPICH_VERSION : '[0-9]*\.[0-9]*\.*\([0-9]*\)[a-zA-Z]*[0-9]*'` V4=`expr $MPICH_VERSION : '[0-9]*\.[0-9]*\.*[0-9]*\([a-zA-Z]*\)[0-9]*'` V5=`expr $MPICH_VERSION : '[0-9]*\.[0-9]*\.*[0-9]*[a-zA-Z]*\([0-9]*\)'` changequote([,]) if test "$V2" -le 9 ; then V2=0$V2 ; fi if test "$V3" = "" ; then V3=0; fi if test "$V3" -le 9 ; then V3=0$V3 ; fi if test "$V4" = "a" ; then V4=0 elif test "$V4" = "b" ; then V4=1 elif test "$V4" = "rc" ; then V4=2 elif test "$V4" = "" ; then V4=3 V5=0 elif test "$V4" = "p" ; then V4=3 fi if test "$V5" -le 9 ; then V5=0$V5 ; fi MPICH_NUMVERSION=`expr $V1$V2$V3$V4$V5 + 0` AC_SUBST(MPICH_NUMVERSION) # ABIVERSION is the name used by simplemake, so we reassign the # libmpich_so_version number to it ABIVERSION=${libmpich_so_version} export ABIVERSION export libmpich_so_version AC_SUBST(ABIVERSION) # Print out the configure options CONFIGURE_ARGUMENTS="$ac_configure_args" AC_SUBST(CONFIGURE_ARGUMENTS) if test -n "$ac_configure_args" ; then echo "Configuring MPICH version $MPICH_VERSION with $ac_configure_args" else echo "Configuring MPICH version $MPICH_VERSION" fi # Add the information on the system: echo "Running on system: `uname -a`" dnl Definitions will be placed in this file rather than in the DEFS variable AC_CONFIG_HEADER(src/include/mpichconf.h) AH_TOP([/* -*- Mode: C; c-basic-offset:4 ; -*- */ /* * (C) 2001 by Argonne National Laboratory. * See COPYRIGHT in top-level directory. */ #ifndef MPICHCONF_H_INCLUDED #define MPICHCONF_H_INCLUDED ]) # We use an #include strategy here because all of the alternative strategies for # quashing these variables have various drawbacks. The alternatives are listed # here to avoid rediscovery of these problems by someone else in the future: # # 1) Strategy: Rewrite mpichconf.h.in with sed at autogen.sh time. # Problem: Automatic remaking of config.status and friends will re-run # autoheader and blow away our sed changes without an opportunity to # patch the resulting file again. # 2) Strategy: Add literal "#undef PACKAGE" lines to the AH_BOTTOM text. # Problem: These lines get rewritten by config.status to be "#define" lines, # so the intended quashing never actually occurs. # 3) Strategy: Use AC_CONFIG_COMMANDS to run a sed rewrite command on # mpichconf.h at config.status time. # Problem: Causes mpichconf.h to always be rewritten, first by the normal # config.status commands and then by sed. This can cause # unnecessary remaking of object files since nearly every C source # file includes this header (see the Autoconf Manual, "Automatic # Remaking") # # The only other plausible strategy would seem to be rewriting config.status # itself via AC_CONFIG_COMMANDS_POST, but that seems error prone. The best # solution would be to stop all subconfigures from including config.h headers # from other packages. Then all of this nonsense can be eliminated. # [goodell@ 2011-08-26] AH_BOTTOM([ /* Include nopackage.h to undef autoconf-defined macros that cause conflicts in * subpackages. This should not be necessary, but some packages are too * tightly intertwined right now (such as ROMIO and the MPICH core) */ #include "nopackage.h" #endif /* !defined(MPICHCONF_H_INCLUDED) */ ]) dnl Set the directory that contains support scripts such as install-sh and dnl config.guess AC_CONFIG_AUX_DIR(confdb) dnl our macro dir is the same as our aux dir AC_CONFIG_MACRO_DIR([confdb]) # Set the FROM_MPICH variable to tell subconfigures that they are # built from within MPICH FROM_MPICH=yes export FROM_MPICH # Save a copy of precious flags as USER_* before any of these flags # are being modified by configure tests. PAC_PREFIX_ALL_FLAGS(USER) # WRAPPER_xFLAGS are used by mpicc and friends. # # WRAPPER_CFLAGS and other compile flags are used for compile options # that are added by MPICH, but should be used by applications (such # as include paths). # # All libraries that are detected by MPICH as needed for some of its # functionality (such as -lpthread) should be added to LIBS so # autoconf link tests can use them. Libraries that are built by MPICH # at make time (and hence are not available for autoconf link tests to # use), such as OPA and MPL, should be added to WRAPPER_LIBS for # static builds. All libraries in LIBS are added to WRAPPER_LIBS # (similarly LDFLAGS are added to WRAPPER_LDFLAGS) as well, at the end # of configure. PAC_PREFIX_ALL_FLAGS(WRAPPER) WRAPPER_CFLAGS="$CFLAGS $MPICH_MPICC_FLAGS" WRAPPER_CPPFLAGS="$CPPFLAGS $MPICH_MPICPP_FLAGS" WRAPPER_CXXFLAGS="$CXXFLAGS $MPICH_MPICXX_FLAGS" WRAPPER_FFLAGS="$FFLAGS $MPICH_MPIF77_FLAGS" WRAPPER_FCFLAGS="$FCFLAGS $MPICH_MPIFC_FLAGS" WRAPPER_LDFLAGS="$MPICH_LDFLAGS" WRAPPER_LIBS="$MPICH_LIBS" # Add MPICHLIB_* to the appropriate flags AC_ARG_VAR(MPICHLIB_CFLAGS, [extra CFLAGS used in building MPICH libraries]) AC_ARG_VAR(MPICHLIB_CPPFLAGS, [extra CPPFLAGS used in building MPICH libraries]) AC_ARG_VAR(MPICHLIB_CXXFLAGS, [extra CXXFLAGS used in building MPICH libraries]) AC_ARG_VAR(MPICHLIB_FFLAGS, [extra FFLAGS used in building MPICH libraries]) AC_ARG_VAR(MPICHLIB_FCFLAGS, [extra FCFLAGS used in building MPICH libraries]) AC_ARG_VAR(MPICHLIB_LDFLAGS, [extra LDFLAGS used in building MPICH libraries]) AC_ARG_VAR(MPICHLIB_LIBS, [extra LIBS used in building MPICH libraries]) CFLAGS="$CFLAGS $MPICHLIB_CFLAGS" CPPFLAGS="$CPPFLAGS $MPICHLIB_CPPFLAGS" CXXFLAGS="$CXXFLAGS $MPICHLIB_CXXFLAGS" FFLAGS="$FFLAGS $MPICHLIB_FFLAGS" FCFLAGS="$FCFLAGS $MPICHLIB_FCFLAGS" LDFLAGS="$LDFLAGS $MPICHLIB_LDFLAGS" LIBS="$LIBS $MPICHLIB_LIBS" dnl include all subsystem m4 fragments now that the core autoconf functionality dnl has been setup. No fragment should do anything except define dnl PAC_SUBCFG_{PREREQ,BODY} macros which will be expanded later as dnl appropriate # begin subsys includes m4_include([subsys_include.m4]) # end subsys includes dnl ---------------------------------------------------------------------------- dnl setup top-level argument handling AC_ARG_ENABLE(echo, AC_HELP_STRING([--enable-echo], [Turn on strong echoing. The default is enable=no.]), set -x) AC_ARG_ENABLE(error-checking, [ --enable-error-checking=level Control the amount of error checking. no - no error checking runtime - error checking controllable at runtime through environment variables all - error checking always enabled (default) ],,enable_error_checking=default) AC_ARG_ENABLE(error-messages, [ --enable-error-messages=level - Control the amount of detail in error messages. all - Maximum amount of information generic - Only generic messages (no information about the specific instance) class - One message per MPI error class none - No messages ],,enable_error_messages=all) AC_ARG_ENABLE(timing, [ --enable-timing=level - Control the amount of timing information collected by the MPICH implementation. none - Collect no data (default) all - Collect lots of data runtime - Runtime control of data collected ],,enable_timing=default) AC_ARG_ENABLE(g, [ --enable-g=option - Control the level of debugging support in the MPICH implementation. option is a list of comma separated names including none - No debugging handle - Trace handle operations handlealloc - Trace handle allocations dbg - Add compiler flag, -g, to all internal compiler flags, i.e. MPICHLIB_CFLAGS, MPICHLIB_CXXFLAGS, MPICHLIB_FFLAGS, and MPICHLIB_FCFLAGS. debug - Synonym for dbg instr - Enable instrumentation log - Enable debug event logging mem - Memory usage tracing meminit - Preinitialize memory associated structures and unions to eliminate access warnings from programs like valgrind memarena - Check for overwrite errors in memory allocation arena mutex - Enable error checking on pthread mutexes mutexnesting - Check for non-nesting of mutexes all - All of the above choices ],,enable_g=none) dnl We may want to force MPI_Aint to be the same size as MPI_Offset, dnl particularly on 32 bit systems with large (64 bit) file systems. AC_ARG_WITH(aint-size, AC_HELP_STRING([--with-aint-size], [Override the size of MPI_AINT (in bytes)]),, with_aint_size=0) AC_ARG_ENABLE(fast, [ --enable-fast=option - Control the level of fast execution in the MPICH implementation. option is a list of comma separated names including defopt - Default compiler optimization -O2 for all language bindings, i.e. --enable-fast=O2, when neither --enable-fast nor --disable-fast is specified. (default) O - Appends default optimization flags, -O, to all internal compiler flags, i.e. MPICHLIB_CFLAGS, MPICHLIB_CXXFLAGS, MPICHLIB_FFLAGS, and MPICHLIB_FCFLAGS. nochkmsg - No error checking, i.e. --disable-error-checking notiming - No timing collection, i.e. --disable-timing. ndebug - Appends -DNDEBUG to MPICHLIB_CFLAGS. all|yes - "defopt", "nochkmsg", "notiming" and "ndebug" are enabled when --enable-fast is specified without any option. none - None of above options, i.e. --disable-fast. Note that --enable-strict will add the -O2 option even if --enable-fast=none is given. ],,enable_fast=defopt) AC_ARG_ENABLE(check-compiler-flags, AC_HELP_STRING([--enable-check-compiler-flags], [enable the checks for all compiler options, xxxFLAGS, MPICH_xxxFLAGS. Default is on.]),, enable_check_compiler_flags=yes) dnl We enable f77 and fc if we can find compilers for them. dnl In addition, we check whether f77 and fc can work together. AC_ARG_ENABLE(f77, AC_HELP_STRING([--enable-f77], [Enable Fortran 77 bindings]),,enable_f77=yes) AC_ARG_ENABLE(fc, AC_HELP_STRING([--enable-fc], [Enable Fortran 90 bindings]),,enable_fc=yes) AC_ARG_ENABLE(f90, AC_HELP_STRING([--enable-f90], [Obsolete option: Use --enable-fc or --disable-fc instead]), [AC_MSG_ERROR([ --enable-f90 and --disable-f90 are NO longer valid configure options, use --enable-fc or --disable-fc instead])] ) AC_ARG_ENABLE(cxx, AC_HELP_STRING([--enable-cxx], [Enable C++ bindings]),,enable_cxx=yes) AC_ARG_ENABLE(romio, AC_HELP_STRING([--enable-romio], [Enable ROMIO MPI I/O implementation]),, enable_romio=yes) AC_ARG_ENABLE(debuginfo, AC_HELP_STRING([--enable-debuginfo], [Enable support for debuggers]),, enable_debuginfo=no) AC_ARG_ENABLE(smpcoll, AC_HELP_STRING([--enable-smpcoll], [Enable support for SMP/multi-core aware collectives]), smpcoll=$enableval,smpcoll=yes) if test $smpcoll = "yes" ; then AC_DEFINE(USE_SMP_COLLECTIVES,1,[define to enable SMP/multi-core aware collectives]) fi ## Enable creation of libtool-style versioning or no versioning AC_ARG_ENABLE(versioning, [AC_HELP_STRING([--enable-versioning],[Enable library versioning])],, [enable_versioning=yes]) if test "$enable_versioning" = "yes" ; then ABIVERSIONFLAGS="-version-info \$(ABIVERSION)" else ABIVERSIONFLAGS="-avoid-version" fi export ABIVERSIONFLAGS AC_SUBST(ABIVERSIONFLAGS) dnl The environment variable MPICH_DEBUGLIBNAME may be used to dnl override the default name of the library that the debugger will dnl load to access the MPICH internal data structures. dnl "default" is a special device that allows MPICH to choose one dnl based on the environment. AC_ARG_WITH(device, AC_HELP_STRING([--with-device=name], [Specify the communication device for MPICH]),, with_device=default) AC_ARG_WITH(pmi, AC_HELP_STRING([--with-pmi=name], [Specify the pmi interface for MPICH]),, with_pmi=default) AC_ARG_WITH(pm, AC_HELP_STRING([--with-pm=name], [Specify the process manager for MPICH. "no" or "none" are valid values. Multiple process managers may be specified as long as they all use the same pmi interface by separating them with colons. The mpiexec for the first named process manager will be installed. Example: "--with-pm=hydra:mpd:gforker" builds the three process managers hydra, mpd and gforker; only the mpiexec from hydra is installed into the bin directory.]),,with_pm=default) AC_ARG_WITH(logging, AC_HELP_STRING([--with-logging=name], [Specify the logging library for MPICH]), [if test -z "$withval" ; then with_logging=rlog ; fi],with_logging=none) dnl The default option needs to be defined in terms of a specific choice dnl (runtime in this case). Note that the default choice is the same as dnl runtime only for certain devices - not for every device. AC_ARG_ENABLE(threads, [ --enable-threads=level - Control the level of thread support in the MPICH implementation. The following levels are supported. single - No threads (MPI_THREAD_SINGLE) funneled - Only the main thread calls MPI (MPI_THREAD_FUNNELED) serialized - User serializes calls to MPI (MPI_THREAD_SERIALIZED) runtime - The level of thread support is determined by the arguments to MPI_Init_thread, with MPI_THREAD_MULTIPLE available. The default option for many communication devices. multiple - Fully multi-threaded (MPI_THREAD_MULTIPLE) always. DO NOT select this option. The option runtime is more efficient and also supports thread_multiple. (multiple aliased to runtime now) default - Make a good choice depending on the communication device. For ch3:nemesis, this is runtime. See also the --enable-thread-cs option for controlling the granularity of the concurrency inside of the library ],,enable_threads=default) AC_ARG_ENABLE(thread-cs, AC_HELP_STRING([--enable-thread-cs=type], [Choose the method used for critical sections and other atomic updates when multiple threads are present. Values may be global (default), per-object, lock-free]),,enable_thread_cs=global) AC_ARG_ENABLE(refcount, AC_HELP_STRING([--enable-refcount=type], [Choose the method for ensuring atomic updates to the reference counts for MPI objects. Values may be lock, lock-free, none. The default depends on the thread-cs choice; for global it is none (because none is required), for per-object it is lock, and for lock-free it is lock-free]),,enable_refcount=default) AC_ARG_ENABLE(mutex-timing, AC_HELP_STRING([--enable-mutex-timing], [calculate the time spent waiting on mutexes]), AC_DEFINE(MPIU_MUTEX_WAIT_TIME,1,[Define to enable timing mutexes])) AC_ARG_ENABLE(handle-allocation, AC_HELP_STRING([--enable-handle-allocation=type], [Choose the method used for allocating MPI object handles. Values may be 'tls' for thread-local storage or 'mutex' for simple locking. 'mutex' is the default.]),,enable_handle_allocation=default) AC_ARG_ENABLE([predefined-refcount], AS_HELP_STRING([--enable-predefined-refcount], [control whether predefined objects like MPI_COMM_WORLD are reference counted (default depends on --enable-thread-cs choice)]),[], [enable_predefined_refcount=default]) AC_ARG_ENABLE(weak-symbols, AC_HELP_STRING([--enable-weak-symbols], [Use weak symbols to implement PMPI routines (default)]),, enable_weak_symbols=yes) AC_ARG_ENABLE([two-level-namespace], [AS_HELP_STRING([--enable-two-level-namespace], [(Darwin only) Build shared libraries and programs built with the mpicc/mpif77/etc. compiler wrappers with '-Wl,-commons,use_dylibs' and without '-Wl,-flat_namespace'. This may make the MPICH installation and MPI programs more compatible with other libraries. Only enable this option if you really know what these linker options imply.])], [], [enable_two_level_namespace=no]) AC_ARG_ENABLE(multi-aliases, AC_HELP_STRING([--enable-multi-aliases], [Multiple aliasing to support multiple fortran compilers (default)]),, enable_multi_aliases=yes) AC_ARG_ENABLE([wrapper-rpath], [AC_HELP_STRING([--enable-wrapper-rpath], [Determine whether the rpath is set when programs are linked by mpicc compiler wrappers. This only applies when shared libraries are built. The default is yes; use --disable-wrapper-rpath to turn this feature off. In that case, shared libraries will be found according to the rules for your system (e.g., in LD_LIBRARY_PATH)])], [],[enable_wrapper_rpath=yes]) AC_SUBST([enable_wrapper_rpath]) AC_ARG_WITH(cross, AC_HELP_STRING([--with-cross=file], [Specify the values of variables that configure cannot determine in a cross-compilation environment]),,with_cross=no) AC_ARG_WITH(namepublisher, [ --with-namepublisher=name Choose the system that will support MPI_PUBLISH_NAME and MPI_LOOKUP_NAME. Options include no (no service available) mpd file[:directory] (optional directory) pmi],,with_namepublisher=default) AC_ARG_WITH(name-publisher, [], with_namepublisher=$with_name_publisher,) AC_SUBST(MPIFLIBNAME) AC_SUBST(PMPIFLIBNAME) dnl The default is a special wrapper library AC_ARG_WITH(fwrapname, AC_HELP_STRING([--with-fwrapname=name], [Specify name of library containing Fortran interface routines]), [FWRAPNAME=$withval;set_FWRAPNAME="yes"],FWRAPNAME=fmpich) AC_SUBST(FWRAPNAME) # Find a C compiler. # We also need to do this before the F77 and FC test to ensure that we # find the C preprocessor reliably. PAC_PROG_CC AM_PROG_CC_C_O dnl needed for automake "silent-rules" PAC_PUSH_FLAG([CFLAGS]) AC_PROG_CPP # Bug in autoconf. Restore cross settings if test "$pac_cross_compiling" = "yes" -a "$ac_cv_prog_cc_cross" = "no" ; then AC_MSG_RESULT([Resetting cross compilation to yes]) cross_compiling=yes ac_cv_prog_cc_cross=yes ac_cv_prog_f77_cross=yes ac_cv_prog_fc_cross=yes ac_cv_prog_cxx_cross=yes fi PAC_POP_FLAG([CFLAGS]) dnl now that autoconf and core compilers are setup, init automake and libtool dnl dnl We would like to pass -Werror, but we are cheating in the "examples/" dnl directory and overriding the user-flags like CFLAGS, which automake-1.12 dnl warns about. Long-term we may need to use a hand-written Makefile.in or dnl something else in this special dir. AM_INIT_AUTOMAKE([-Wall foreign 1.12.3 silent-rules subdir-objects]) AM_MAINTAINER_MODE([enable]) AM_PROG_AR LT_INIT([disable-shared]) # Non-verbose make by default m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])]) # Disable rpath in the compiler wrappers if shared libraries are disabled, since # rpath makes no sense in the context of static libraries. if test "X$enable_shared" = "Xno" ; then enable_wrapper_rpath=no fi dnl AC_PROG_{CXX,F77,FC} must come early in configure.ac in order to avoid some dnl esoteric autoconf macro expansion errors dnl dnl Also, DO NOT attempt to place shell conditionals (either manually or via dnl AS_IF) around these macros in an effort to save configure time. It will dnl lead to weird AM_CONDITIONAL errors and potentially other problems. # Before attempting to find valid compilers, set the corresponding precious # shell variable to "false" (the program/builtin that always fails) for any # languages that have been disabled by the user with "--disable-LANG". This # should save a bit of configure time and also prevent user complaints like # ticket #1570. AS_IF([test "x$enable_f77" = "xno"],[F77=false]) AS_IF([test "x$enable_fc" = "xno"],[FC=false]) # Set CXXCPP=$CPP so that we don't fail the (fatal) preprocessor sanity check. # At least as of autoconf-2.69, this sanity test does not check for any # C++-specific headers. AS_IF([test "x$enable_cxx" = "xno"],[CXX=false ; CXXCPP=$CPP]) # suppress default "-g -O2" from AC_PROG_CXX : ${CXXFLAGS=""} AC_PROG_CXX([PAC_CXX_SEARCH_LIST]) # suppress default "-g -O2" from AC_PROG_F77 : ${FFLAGS=""} AC_PROG_F77([PAC_F77_SEARCH_LIST]) # suppress default "-g -O2" from AC_PROG_FC : ${FCFLAGS=""} AC_PROG_FC([PAC_FC_SEARCH_LIST]) # compute canonical system types AC_CANONICAL_BUILD AC_CANONICAL_HOST # TARGET not needed, MPICH isn't a compiler # Enable better caching control PAC_ARG_CACHING # Set CFLAGS for enable strict if necessary. Do this *first* because # it may influence the output of the other tests PAC_ARG_STRICT # ----------------------------------------------------------------------------- # First check that we have a clean build if we are doing a VPATH build PAC_VPATH_CHECK(src/include/mpi.h src/env/mpicc src/env/mpicc.conf,lib) # ---------------------------------------------------------------------------- # This test is complicated by the fact that top_srcdir is not set until # the very end of configure. Instead, we get it ourselves if test -z "$top_srcdir" ; then use_top_srcdir=$srcdir else use_top_srcdir=$top_srcdir fi if test -z "$master_top_srcdir" ; then # This needs to be an absolute pathname case "$use_top_srcdir" in /*) ;; *) use_top_srcdir=`(cd $use_top_srcdir && pwd)` ;; esac master_top_srcdir=$use_top_srcdir fi # Get the directory that we're running in... if test -z "$master_top_builddir" ; then master_top_builddir="`pwd`" fi AC_SUBST(master_top_builddir) AC_SUBST(master_top_srcdir) export master_top_builddir export master_top_srcdir # ---------------------------------------------------------------------------- # with-device if test "$with_device" = "default" ; then # Pick the device. For now, always choose ch3 with_device=ch3 fi # Extract the device name from any options # Allow the device to specify a directory; if no directory, use the # included directories # DEVICE=$with_device AC_SUBST(DEVICE) device_name=`echo $with_device | sed -e 's/:.*$//'` changequote(<<,>>) device_args=`echo $with_device | sed -e 's/^[^:]*//' -e 's/^://'` changequote([,]) devicedir=$use_top_srcdir/src/mpid/$device_name devicereldir=src/mpid/$device_name case "$device_name" in /*) devicedir=$DEVICE # Get the name from the leaf device_name=`echo $device_name ~ sed -e 's%.*/%%'` # FIXME: should the devicereldir be different (perhaps not - # this allows use to build within our tree, even when other data # is outside of the tree) ;; *) ;; esac export device_name export device_args export devicedir # See if the device wants to say something about the compilers if test -f $devicedir/mpichprereq ; then . $devicedir/mpichprereq fi # expand all of the prereq macros in the correct order m4_map([PAC_SUBCFG_DO_PREREQ], [PAC_SUBCFG_MODULE_LIST]) # ---------------------------------------------------------------------------- # Set default library names if names haven't already been provided AC_ARG_VAR([MPILIBNAME],[can be used to override the name of the MPI library (default: "mpich")]) AC_ARG_VAR([PMPILIBNAME],[can be used to override the name of the MPI profiling library (default: "p$MPILIBNAME")]) AC_ARG_VAR([MPICXXLIBNAME],[can be used to override the name of the MPI C++ library (default: "${MPILIBNAME}cxx")]) MPILIBNAME=${MPILIBNAME:-"mpich"} PMPILIBNAME_set=no if test -n "$PMPILIBNAME" ; then PMPILIBNAME_set=yes fi PMPILIBNAME=${PMPILIBNAME:-"p$MPILIBNAME"} # Note that the name for this library may be updated after we check for # enable_shmem # Fortran names are set later. # We use a different library for the C++ wrappers to avoid problems when # creating shared libraries if test -z "$MPICXXLIBNAME" ; then MPICXXLIBNAME="${MPILIBNAME}cxx" ; fi export MPIFLIBNAME export PMPIFLIBNAME export MPICXXLIBNAME AC_SUBST(MPICXXLIBNAME) # We'll set FORTRAN_BINDING to 1 if we support Fortran FORTRAN_BINDING=0 # Set up default compiler optimization MPI_DEFAULT_COPTS="-O2" MPI_DEFAULT_CXXOPTS="-O2" MPI_DEFAULT_FOPTS="-O2" MPI_DEFAULT_FCOPTS="-O2" # enable-fast # strip off multiple options, separated by commas save_IFS="$IFS" IFS="," for option in $enable_fast ; do case "$option" in defopt) enable_default_optimize=yes ;; nochkmsg) enable_fast_nochkmsg=yes ;; notiming) enable_timing=no ;; ndebug) enable_append_ndebug=yes ;; # # [BRT] removed the reseting of enable_g so that --with-enable=dbg,meminit # can be specified with -enable-fast. This change was largely made for the # PETSc folks who want to use --enable-fast to eliminate parameter checking # overhead, but also wish to use meminit to eliminate initialization # warnings from valgrind. # all|yes) enable_default_optimize=yes enable_fast_nochkmsg=yes # Disable timing/logging stuffs enable_timing=no enable_append_ndebug=yes ;; O*) # Allows O where can be [0-9] or ' '. opt_flags=`echo $option | sed -e 's%\(O[0-9] \)%\1%g'` if test -n "$opt_flags" ; then enable_default_optimize=yes MPI_DEFAULT_COPTS="-$option" MPI_DEFAULT_CXXOPTS="-$option" MPI_DEFAULT_FOPTS="-$option" MPI_DEFAULT_FCOPTS="-$option" else IFS="$save_IFS" AC_MSG_WARN([Unknown value $option for --enable-fast]) IFS="," fi ;; none|no) enable_default_optimize=no enable_fast_nochkmsg=no # Reset timing/logging stuffs to when --enable-timing isn't specified. enable_timing=default enable_append_ndebug=no ;; *) IFS="$save_IFS" AC_MSG_WARN([Unknown value $option for --enable-fast]) IFS="," ;; esac done IFS="$save_IFS" # ---------------------------------------------------------------------------- # Process any enable or with values # We must do enable-fast first, because it changes the other enable values if test "$enable_fast_nochkmsg" = "yes" ; then # if test "$enable_error_checking" != "default" -a "$enable_error_checking" != "no" ; then AC_MSG_ERROR([enable-fast overrides enable-error-checking; error-checking option $enable_error_checking ignored]) fi enable_error_checking=no # Export a variable that will allow the test suite to detect that # MPICH has no error testing MPICH_FAST=yes export MPICH_FAST fi # error-checking # Change default into the specific value of the default if test "$enable_error_checking" = "default" ; then enable_error_checking=all fi # glue_romio.h needs the variable HAVE_ERROR_CHECKING to have the value 0 or 1 HAVE_ERROR_CHECKING=0 case "$enable_error_checking" in no) # if error checking has been disabled, then automatically disable the error # checking tests in the test suite ac_configure_args="${ac_configure_args} --disable-checkerrors" ;; all|yes|runtime) error_checking_kind=`echo $enable_error_checking | \ tr 'abcdefghijklmnopqrstuvwxyz' 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'` error_checking_kind=MPID_ERROR_LEVEL_$error_checking_kind AC_DEFINE_UNQUOTED(HAVE_ERROR_CHECKING,$error_checking_kind,[Define to enable error checking]) HAVE_ERROR_CHECKING=1 ;; *) AC_MSG_WARN([Unknown value $enable_error_checking for enable-error-checking]) ;; esac # permit @HAVE_ERROR_CHECKING@ substitution in glue_romio.h AC_SUBST([HAVE_ERROR_CHECKING]) # error-messages case "$enable_error_messages" in no|none) error_message_kind="MPICH_ERROR_MSG_NONE" ;; all|yes) error_message_kind="MPICH_ERROR_MSG_ALL" ;; generic) error_message_kind="MPICH_ERROR_MSG_GENERIC" ;; class) error_message_kind="MPICH_ERROR_MSG_CLASS" ;; *) AC_MSG_WARN([Unknown value $enable_error_messages for enable-error-messages]) ;; esac AC_DEFINE_UNQUOTED(MPICH_ERROR_MSG_LEVEL,$error_message_kind,[define to enable error messages]) # ---------------------------------------------------------------------------- # # enable-timing and with-logging # # Still to do: add subsets: e.g., class=pt2pt,class=coll. See mpich doc # # Logging and timing are intertwined. If you select logging, you # may also need to select a timing level. If no timing is selected # but logging with rlog is selected, make "all" the default timing level. # # FIXME: make timing and logging options work more cleanly together, # particularly when other logging options are selected (e.g., logging is not # rlog). # ---------------------------------------------------------------------------- AM_CONDITIONAL([BUILD_LOGGING_RLOG],[test "X$with_logging" = "Xrlog"]) collect_stats=false logging_required=false if test "$enable_timing" = "default" ; then if test "$with_logging" = "rlog" ; then enable_timing=all fi fi timing_name=$enable_timing case "$enable_timing" in no) timing_name=none ;; time) collect_stats=true ;; log|log_detailed) logging_required=true ;; yes) timing_name=all collect_stats=true logging_required=true ;; all|runtime) collect_stats=true logging_required=true ;; none|default) timing_name=none ;; *) AC_MSG_WARN([Unknown value $enable_timing for enable-timing]) enable_timing=no timing_name=none ;; esac # # The default logging package is rlog; you can get it by # specifying --with-logging or --with-logging=rlog # case $with_logging in yes) logging_name=rlog ;; no|none) logging_name=none ;; default) if test "$logging_required" = "true" ; then logging_name=rlog else logging_name=none fi ;; *) logging_name=$with_logging ;; esac # # Include the selected logging subsystem # # Choices: # 1) A subdir of src/util/logging # This directory must contain a configure which will be executed # to build the # 2) An external directory # This directory must contain # a mpilogging.h file # It may contain # a setup_logging script # a configure # # logging_subsystems= if test "$logging_name" != "none" ; then # Check for an external name (directory containing a /) hasSlash=`echo A$logging_name | sed -e 's%[[^/]]%%g'` if test -n "$hasSlash" ; then # Check that the external logging system is complete. # Any failure will cause configure to abort if test ! -d $logging_name ; then AC_MSG_ERROR([External logging directory $logging_name not found. Configure aborted]) logging_name=none elif test ! -s $logging_name/mpilogging.h ; then AC_MSG_ERROR([External logging header $logging_name/mpilogging.h not found. Configure aborted]) logging_name=none fi logdir=$logging_name # Force the logdir to be absolute logdir=`cd $logdir && pwd` # Switch name to "external" because that is how the MPICH # code will know it logging_name=external # Add the dir to the include paths #CPPFLAGS="$CPPFLAGS -I$logdir" CPPFLAGS="$CPPFLAGS -I$logdir" # Add to the list of external modules to setup if test -x $logdir/setup_logging ; then EXTERNAL_SETUPS="$EXTERNAL_SETUPS $logdir/setup_logging" fi else logdir=$srcdir/src/util/logging logreldir=src/util/logging/$logging_name logging_subsystems="$logging_subsystems $logreldir" for dir in $logging_name ; do if test ! -d $logdir/$dir ; then AC_MSG_ERROR([$logdir/$dir does not exist. Configure aborted]) logging_name=none fi done for dir in $logging_subsystems ; do if test ! -x $srcdir/$dir/configure ; then AC_MSG_ERROR([$srcdir/$dir has no configure (required). Configure aborted]) logging_name=none fi done fi fi # # FIXME: Logging doesn't necessarily require timing (e.g., simply logging the # sequence of routines). if test "$logging_name" != "none" ; then if test "$enable_timing" != "no" ; then if test "$enable_timing" = "default" -o "$enable_timing" = "none" ; then enable_timing=log timing_name=log fi subsystems="$subsystems $logging_subsystems" else AC_MSG_WARN([Timing was disabled. Logging has been disabled as well.]) with_logging=no logging_name=none fi else if test "$logging_required" = "true" ; then AC_MSG_WARN([Timing was enabled with log option but no logging library is available. Timing has been disabled.]) enable_timing=no timing_name=none fi fi if test "$timing_name" != "none" ; then timing_kind=`echo $timing_name | \ tr 'abcdefghijklmnopqrstuvwxyz' 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'` timing_kind=MPID_TIMING_KIND_$timing_kind AC_DEFINE_UNQUOTED(HAVE_TIMING,$timing_kind,[define to enable timing collection]) if test "$collect_stats" = "true" ; then AC_DEFINE(COLLECT_STATS,1,[define to enable collection of statistics]) fi fi use_logging_variable="MPID_LOGGING_`echo $logging_name | tr 'abcdefghijklmnopqrstuvwxyz' 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'`" AC_DEFINE_UNQUOTED(USE_LOGGING,$use_logging_variable,[define to choose logging library]) # ---------------------------------------------------------------------------- # End of logging tests # ---------------------------------------------------------------------------- # ---------------------------------------------------------------------------- # Check to see if the device does not support spawn. # FIXME: This should provide the option of not building the dynamic # process routines. It could also allow us to specialize support # for all processes are members of MPI_COMM_WORLD (only one comm_world). # ---------------------------------------------------------------------------- if test "$MPID_NO_SPAWN" = yes ; then AC_MSG_WARN([The device $with_device does not support MPI dynamic process routines]) fi # MPL PAC_CONFIG_SUBDIR(src/mpl,,AC_MSG_ERROR(MPL configure failed)) PAC_PREPEND_FLAG([-lmpl], [WRAPPER_LIBS]) PAC_APPEND_FLAG([-I${master_top_builddir}/src/mpl/include], [CPPFLAGS]) PAC_APPEND_FLAG([-I${use_top_srcdir}/src/mpl/include], [CPPFLAGS]) # OpenPA AC_ARG_WITH([openpa-prefix], [AS_HELP_STRING([[--with-openpa-prefix[=DIR]]], [use the OpenPA atomics library installed in DIR, rather than the one included in src/openpa. Pass "embedded" to force usage of the OpenPA source distributed with MPICH.])], [], [# see if OPA is already installed on the system PAC_PUSH_FLAG([LIBS]) PAC_PREPEND_FLAG([-lopa],[LIBS]) AC_LINK_IFELSE([AC_LANG_PROGRAM([dnl #include "opa_primitives.h" ],[ OPA_int_t i; OPA_store_int(i,10); OPA_fetch_and_incr_int(&i,5); ])dnl ], [with_openpa_prefix=system],[with_openpa_prefix=embedded]) PAC_POP_FLAG([LIBS]) ]) if test "$with_openpa_prefix" = "embedded" ; then if test -e "${use_top_srcdir}/src/openpa" ; then PAC_APPEND_FLAG([-I${use_top_srcdir}/src/openpa/src],[CPPFLAGS]) PAC_APPEND_FLAG([-I${master_top_builddir}/src/openpa/src],[CPPFLAGS]) # OPA defaults to "auto", but in MPICH we want "auto_allow_emulation" to # easily permit using channels like ch3:sock that don't care about atomics AC_ARG_WITH([atomic-primitives], [AS_HELP_STRING([--with-atomic-primitives], [Force OPA to use a specific atomic primitives implementation. See the src/openpa directory for more info.])], [],[with_atomic_primitives=not_specified]) opa_subdir_args="" if test "$with_atomic_primitives" = "not_specified" ; then opa_subdir_args="--with-atomic-primitives=auto_allow_emulation" fi PAC_CONFIG_SUBDIR_ARGS([src/openpa],[$opa_subdir_args],[],[AC_MSG_ERROR([OpenPA configure failed])]) PAC_PREPEND_FLAG([-lopa],[WRAPPER_LIBS]) else AC_MSG_WARN([Attempted to use the embedded OpenPA source tree in "src/openpa", but it is missing. Configuration or compilation may fail later.]) fi elif test "$with_openpa_prefix" = "system" ; then PAC_PREPEND_FLAG([-lopa],[WRAPPER_LIBS]) elif test "$with_openpa_prefix" = "no" ; then # The user doesn't want to use OPA. This may or may not cause MPICH to # fail to configure/build, depending on many other factors. : else # The user specified an already-installed OPA; just sanity check, don't # subconfigure it AS_IF([test -s "${with_openpa_prefix}/include/opa_primitives.h" -a -s "${with_openpa_prefix}/include/opa_config.h"], [:],[AC_MSG_ERROR([the OpenPA installation in "${with_openpa_prefix}" appears broken])]) PAC_APPEND_FLAG([-I${with_openpa_prefix}/include],[CPPFLAGS]) PAC_PREPEND_FLAG([-lopa],[WRAPPER_LIBS]) if test -d ${with_openpa_prefix}/lib64 ; then PAC_APPEND_FLAG([-L${with_openpa_prefix}/lib64],[WRAPPER_LDFLAGS]) fi PAC_APPEND_FLAG([-L${with_openpa_prefix}/lib],[WRAPPER_LDFLAGS]) fi # ---------------------------------------------------------------------------- # Threads # ---------------------------------------------------------------------------- # # Threads must be supported by the device. First, set the default to # be the highest supported by the device if test "$enable_threads" = default ; then # XXX DJG bug is here, PREREQ is not being used right now if test -n "$MPID_MAX_THREAD_LEVEL" ; then case $MPID_MAX_THREAD_LEVEL in MPI_THREAD_SINGLE) enable_threads=single ;; MPI_THREAD_FUNNELED) enable_threads=funneled ;; MPI_THREAD_SERIALIZED) enable_threads=serialized ;; MPI_THREAD_MULTIPLE) enable_threads=runtime ;; *) AC_MSG_ERROR([Unrecognized thread level from device $MPID_MAX_THREAD_LEVEL]) ;; esac else enable_threads=single fi fi if test "$enable_threads" = "yes" ; then enable_threads=multiple elif test "$enable_threads" = "no" ; then enable_threads=single elif test "$enable_threads" = "default"; then if test "$with_device" = "default" -o "$with_device" = "ch3:sock" ; then enable_threads=runtime fi fi # Runtime is an alias for multiple with an additional value if test "$enable_threads" = "runtime" ; then AC_DEFINE(HAVE_RUNTIME_THREADCHECK,1,[Define if MPI supports MPI_THREAD_MULTIPLE with a runtime check for thread level]) enable_threads=multiple fi MPICH_THREAD_LEVEL=MPI_THREAD_FUNNELED case "$enable_threads" in single) thread_pkg_required=no MPICH_THREAD_LEVEL=MPI_THREAD_SINGLE ;; funneled) thread_pkg_required=no MPICH_THREAD_LEVEL=MPI_THREAD_FUNNELED ;; serialized) # FIXME: Why does serialized require a thread package? thread_pkg_required=yes MPICH_THREAD_LEVEL=MPI_THREAD_SERIALIZED ;; multiple) thread_pkg_required=yes MPICH_THREAD_LEVEL=MPI_THREAD_MULTIPLE ;; *) AC_MSG_ERROR(["$enable_threads" is not a valid value for --enable-threads]) ;; esac # Check that the requested thread level is available. threadLevelOK=yes if test -z "$MPID_MAX_THREAD_LEVEL" ; then if test "$MPICH_THREAD_LEVEL" = "MPI_THREAD_MULTIPLE" -o "$MPICH_THREAD_LEVEL" = "MPI_THREAD_SERIALIZED" ; then threadLevelOK=no fi else # Check that MPID_MAX_THREAD_LEVEL is at least as large as the # selected MPICH_THREAD_LEVEL case $MPICH_THREAD_LEVEL in MPI_THREAD_MULTIPLE) if test "$MPID_MAX_THREAD_LEVEL" != "MPI_THREAD_MULTIPLE" ; then threadLevelOK=no fi ;; MPI_THREAD_SERIALIZED) if test "$MPID_MAX_THREAD_LEVEL" != "MPI_THREAD_MULTIPLE" -a \ "$MPID_MAX_THREAD_LEVEL" != "MPI_THREAD_SERIALIZED" ; then threadLevelOK=no fi ;; MPI_THREAD_FUNNELED) if test "$MPID_MAX_THREAD_LEVEL" = "MPI_THREAD_SINGLE" ; then threadLevelOK=no fi ;; MPI_THREAD_SINGLE) ;; esac fi if test "$threadLevelOK" != yes ; then AC_MSG_ERROR([The device $with_device does not support $MPICH_THREAD_LEVEL]) fi export MPICH_THREAD_LEVEL AC_DEFINE_UNQUOTED(MPICH_THREAD_LEVEL,$MPICH_THREAD_LEVEL,[Level of thread support selected at compile time]) if test "$thread_pkg_required" = "no" ; then MPIU_THREAD_DEFAULT=${MPIU_THREAD_DEFAULT:-none} fi export MPIU_THREAD_DEFAULT # Check for value thread_cs choice; set the refcount default if necessary thread_granularity=MPIU_THREAD_GRANULARITY_SINGLE thread_refcount=MPIU_REFCOUNT_NONE if test "$enable_threads" = "multiple" ; then case $enable_thread_cs in global) thread_granularity=MPIU_THREAD_GRANULARITY_GLOBAL if test "$enable_refcount" = "default" ; then enable_refcount=none ; fi ;; brief-global|brief_global) AC_MSG_ERROR([--enable-thread-cs=brief-global is no longer supported, please select a different granularity]) ;; per-object|per_object) thread_granularity=MPIU_THREAD_GRANULARITY_PER_OBJECT if test "$enable_refcount" = "default" ; then enable_refcount=lock ; fi ;; lock-free|lock_free|lockfree) thread_granularity=MPIU_THREAD_GRANULARITY_LOCK_FREE if test "$enable_refcount" = "default" ; then enable_refcount=lock-free ; fi if test "$enable_predefined_refcount" = "default" ; then enable_predefined_refcount=no ; fi ;; *) AC_MSG_ERROR([Unrecognized value $enable_thread_cs for --enable-thread-cs]) ;; esac case $enable_refcount in lock) thread_refcount=MPIU_REFCOUNT_LOCK ;; lock-free|lock_free|lockfree) thread_refcount=MPIU_REFCOUNT_LOCKFREE ;; none) thread_refcount=MPIU_REFCOUNT_NONE ;; *) AC_MSG_ERROR([Unrecognized value $enable_refcount for --enable-refcount]) ;; esac fi AC_DEFINE_UNQUOTED([MPIU_THREAD_GRANULARITY],$thread_granularity,[Method used to implement atomic updates and access]) if test "$enable_predefined_refcount" = "no" ; then AC_DEFINE([MPIU_THREAD_SUPPRESS_PREDEFINED_REFCOUNTS],[1],[define to disable reference counting predefined objects like MPI_COMM_WORLD]) fi case $enable_handle_allocation in mutex|default) handle_allocation_method=MPIU_HANDLE_ALLOCATION_MUTEX ;; tls) handle_allocation_method=MPIU_HANDLE_ALLOCATION_THREAD_LOCAL ;; *) AC_MSG_ERROR([Unrecognized value $enable_handle_allocation for --enable-handle-allocation]) ;; esac AC_DEFINE_UNQUOTED([MPIU_HANDLE_ALLOCATION_METHOD],$handle_allocation_method,[Method used to allocate MPI object handles]) AC_DEFINE_UNQUOTED([MPIU_THREAD_REFCOUNT],$thread_refcount,[Method used to implement refcount updates]) # enable-g # strip off multiple options, separated by commas save_IFS="$IFS" IFS="," for option in $enable_g ; do case "$option" in debug|dbg) enable_append_g=yes ;; no|none) ;; handlealloc) perform_handlealloc=yes ;; handle) AC_DEFINE(MPICH_DEBUG_HANDLES,1,[Define to enable handle checking]) ;; instr) perform_instr=yes ;; meminit) perform_meminit=yes ;; memarena) perform_memarena=yes perform_memtracing=yes ;; mem) perform_memtracing=yes ;; log) perform_dbglog=yes ;; mutex) perform_dbgmutex=yes ;; mutexnesting) perform_mutexnesting=yes ;; all|yes) perform_memtracing=yes perform_dbglog=yes enable_append_g=yes perform_meminit=yes perform_instr=yes perform_dbgmutex=yes perform_mutexnesting=yes perform_handlealloc=yes ;; *) IFS=$save_IFS AC_MSG_WARN([Unknown value $option for enable-g]) IFS="," ;; esac done IFS="$save_IFS" if test "$enable_append_g" = "yes" ; then CFLAGS="$CFLAGS -g" CXXFLAGS="$CXXFLAGS -g" FFLAGS="$FFLAGS -g" FCFLAGS="$FCFLAGS -g" fi if test "$enable_append_ndebug" = "yes" ; then CFLAGS="$CFLAGS -DNDEBUG -DNVALGRIND" CXXFLAGS="$CXXFLAGS -DNDEBUG -DNVALGRIND" # MPICH does NOT assume any preprocessing support from the Fortran compiler, # so no Fortran files contain any preprocessing statements. # Don't set FFLAGS or FCFLAGS with any -D. fi if test -n "$perform_meminit" ; then AC_DEFINE(MPICH_DEBUG_MEMINIT,1,[Define to enable preinitialization of memory used by structures and unions]) fi if test "$perform_handlealloc" = yes ; then AC_DEFINE(MPICH_DEBUG_HANDLEALLOC,1,[Define to enable checking of handles still allocated at MPI_Finalize]) fi if test "$perform_instr" = yes ; then AC_DEFINE(USE_MPIU_INSTR,1,[Define this to enable internal instrumentation] ) fi if test -n "$perform_memtracing" ; then enable_g_mem=yes AC_DEFINE(USE_MEMORY_TRACING,1,[Define to enable memory tracing]) if test -n "$perform_memarena" ; then AC_DEFINE(MPICH_DEBUG_MEMARENA,1,[Define if each function exit should confirm memory arena correctness]) fi fi if test -n "$perform_mutexnesting" ; then AC_DEFINE(MPICH_DEBUG_MUTEXNESTING,1,[Define to check nesting in mutexes]) fi USE_DBG_LOGGING=0 if test -n "$perform_dbglog" ; then if test "$with_logging" != "none" ; then AC_MSG_WARN([--with-logging overrides --enable-g=log]) else AC_DEFINE(USE_DBG_LOGGING,1,[Define to enable logging macros]) USE_DBG_LOGGING=1 fi fi # allow @USE_DBG_LOGGING@ substitution in glue_romio.h AC_SUBST([USE_DBG_LOGGING]) if test -n "$perform_dbgmutex" ; then AC_DEFINE(MPICH_DEBUG_MUTEX,1,[Define to enable mutex debugging]) fi pac_cross_compiling=no if test "$with_cross" != "no" ; then if test -s "$with_cross" ; then AC_MSG_RESULT([Reading values from cross-compilation file $with_cross]) . $with_cross # Autoconf 2.52 no longer sets cross_compiling except with the # awkward "targethost" options. pac_cross_compiling=yes cross_compiling=yes ac_cv_prog_cc_cross=yes ac_cv_prog_f77_cross=yes ac_cv_prog_fc_cross=yes ac_cv_prog_cxx_cross=yes export cross_compiling # Export all cross variables. Any subsidiary configure should also # export CROSS_xxx rm -f confcross (set) 2>&1 | grep CROSS_ | \ sed -e 's/^/export /g' -e 's/=.*//g' > confcross . confcross rm -f confcross fi fi # This goes here because we need the top_srcdir if test "$enable_romio" = "yes" ; then if test -d $use_top_srcdir/src/mpi/romio ; then subsystems="$subsystems src/mpi/romio" AC_DEFINE(HAVE_ROMIO,1,[Define if ROMIO is enabled]) # make it possible to "#include" mpio.h at build time # # This ought to be sufficient, but there is also a symlink setup in # src/include to accomodate current mpicc limitations. See # src/mpi/Makefile.mk for more info. PAC_APPEND_FLAG([-I${master_top_builddir}/src/mpi/romio/include],[CPPFLAGS]) # Set environment variables that the romio configure expects export use_top_srcdir top_build_dir=`pwd` export top_build_dir # if there is no $top_build_dir/lib, romio puts lib in wrong place # This test used -e under Linux, but not all test programs understand # -e if test ! -d lib ; then mkdir lib ; fi # tell mpi.h to include mpio.h PAC_HAVE_ROMIO else AC_MSG_WARN([ROMIO src directory is not available]) fi fi AM_CONDITIONAL([BUILD_ROMIO], [test x$enable_romio = xyes]) # # FIXME: If an external device, don't necessarily complain (e.g., # if the device is already built) if test ! -d $devicedir ; then AC_MSG_ERROR([Device $device_name is unknown]) elif test -f $devicedir/subconfigure.m4 ; then # this is a new-style subconfigure device, don't add it as a subsystem : elif test ! -x $devicedir/configure ; then if test -s $devicedir/configure ; then AC_MSG_WARN([The configure in $devicedir exists but is not executable]) else AC_MSG_WARN([Device $device_name has no configure]) fi device_name="" else # Add the device to the configure list devsubsystems="$devsubsystems $devicereldir" # Make device_name available to subdirs fi # with-pm if test "$with_pm" = "none" ; then # add "none" as synonym for "no" to agree with older erroneous docs with_pm="no" fi if test "$MPID_NO_PM" = yes ; then if test "$with_pm" != "default" -a "$with_pm" != no ; then AC_MSG_ERROR([The PM chosen ($with_pm) is is not valid for the selected device ($with_device)]) fi # This is used to change with_pm=default to with_pm=no in the case # where the device does not want a PM with_pm=no fi if test -z "$with_pm" ; then with_pm="no" fi if test "$with_pmi" = "uni" -a "$with_pm" = "default" ; then with_pm="no" fi if test "$with_pm" = "default" -o "$with_pm" = "yes" ; then with_pm=hydra fi # We allow multiple pm names, separated by : or , if test "$with_pm" != "no" ; then pm_names="`echo $with_pm | sed -e 's/:/ /g' -e 's/,/ /g'`" else pm_names="" fi # hasError=no # We need to be careful about PM's that have either conflicting # requirements (e.g., different PMI implementations) or different # optional features (e.g., MPID_PM_NAMESERVER). # In addition, we need to interleave the setup of the PMI and PM # modules. The order is as follows: # # For each PM, execute the mpichprereq script for that pm (if present). # This script provides information about the PM, including which PMI # implementations are supported. # # Then, for the selected PMI, the setup script (if any) is run. This is # necessary because the setup of the PM may require information discovered # or provided duing the PMI setup step (e.g., smpd requires this) # # Finally, for each PM, the setup script is executed. # # Step 1: invoke the mpichprereq for each PM for pm_name in $pm_names ; do if test -z "$first_pm_name" ; then first_pm_name=$pm_name export first_pm_name fi if test ! -d $use_top_srcdir/src/pm/$pm_name ; then AC_MSG_WARN([$use_top_srcdir/src/pm/$pm_name does not exist. PM is unknown]) hasError=yes elif test ! -x $use_top_srcdir/src/pm/$pm_name/configure -a \ ! -f $use_top_srcdir/src/pm/$pm_name/subconfigure.m4 ; then if test -s $use_top_srcdir/src/pm/$pm_name/configure ; then AC_MSG_WARN([The configure in $use_top_srcdir/src/pm/$pm_name exists but is not executable]) else AC_MSG_WARN([pm $pm_name has no configure or subconfigure.m4]) fi pm_name="" hasError=yes else nameserver=$MPID_PM_NAMESERVER if test -f $use_top_srcdir/src/pm/$pm_name/mpichprereq ; then echo sourcing $use_top_srcdir/src/pm/$pm_name/mpichprereq . $use_top_srcdir/src/pm/$pm_name/mpichprereq fi # Check for a change; if found, we'll take the default if test "$MPID_PM_NAMESERVER" != "$nameserver" ; then if test "$first_pm_name" != "$pm_name" ; then # Reject suggestion (use the default, common mode) MPID_PM_NAMESERVER="" fi fi fi done if test "$hasError" != no ; then AC_MSG_ERROR([Aborting configure because an error was seen in the selection of process managers]) fi # # pm_name is the *primary* pm pm_name=$first_pm_name AC_SUBST(pm_name) # Some versions of PM and PMI require a special definition (currently, only # smpd requires this) if test "$PMI_REQUIRES_READABLE_TOKENS" = "yes" ; then AC_DEFINE(USE_HUMAN_READABLE_TOKENS,1,[Define to use ='s and spaces in the string utilities.]) fi # Step 2: # Once we've selected the process manager (or managers), we can # check that we have a compatible PMI implemenatation. # with-pmi if test "$MPID_NO_PMI" = yes ; then if test "$with_pmi" != "default" -a "$with_pmi" != no ; then AC_MSG_ERROR([The PMI chosen ($with_pmi) is is not valid for the selected device ($with_device)]) fi # This is used to change with_pmi=default to with_pmi=no in the case # where the device does not want a PMI with_pmi=no elif test "$with_pmi" != "no" ; then if test "$with_pmi" = "default" -o "$with_pmi" = "yes" ; then if test -n "$PM_REQUIRES_PMI" ; then with_pmi=$PM_REQUIRES_PMI else with_pmi=simple fi elif test -n "$PM_REQUIRES_PMI" ; then # Test for compatibility between pm and pmi choices if test "$PM_REQUIRES_PMI" != "$with_pmi" ; then AC_MSG_ERROR([The PM chosen ($with_pm) requires the PMI implementation $PM_REQUIRES_PMI but $with_pmi was selected as the PMI implementation.]) fi fi pmi_name=$with_pmi if test ! -d $use_top_srcdir/src/pmi/$pmi_name ; then AC_MSG_WARN([$use_top_srcdir/src/pmi/$pmi_name does not exist. PMI is unknown]) elif test ! -x $use_top_srcdir/src/pmi/$pmi_name/configure ; then if test ! -f $use_top_srcdir/src/pmi/$pmi_name/subconfigure.m4 ; then AC_MSG_WARN([pmi $pmi_name has no configure or subconfigure.m4]) pmi_name="" fi else # only add to subsystems if a full configure is present subsystems="$subsystems src/pmi/$pmi_name" fi else AC_MSG_ERROR([A PMI implementation must be selected or the default used.]) fi # Step 3: complete pm setup. # Note that checks for errors have already been performed, so this # loop does not need to perform any extra error checks. # Note that this uses this_pm_name because pm_name must be the *first* # of the PM names for this_pm_name in $pm_names ; do # only add the PM to the subsystems if it has a full configure to be # executed if test -f $use_top_srcdir/src/pm/$this_pm_name/configure ; then subsystems="$subsystems src/pm/$this_pm_name" fi if test -f $use_top_srcdir/src/pm/$this_pm_name/setup_pm ; then echo sourcing $use_top_srcdir/src/pm/$this_pm_name/setup_pm . $use_top_srcdir/src/pm/$this_pm_name/setup_pm fi done # Check for whether the compiler defines a symbol that contains the # function name. The MPICH code, for greater portability, defines # its own symbols, FCNAME (a string) and FUNCNAME (a token that is not a # string). Code should use these symbols where possible. However, # some debugging macros may want to use a compiler-provided symbol # for the function name, and this check makes it possible to # define such macros in a way that is always correct. PAC_CC_FUNCTION_NAME_SYMBOL # Check if $MPI_DEFAULT_COPTS is valid with $CC if test "$enable_default_optimize" = "yes" \ -a -n "$MPI_DEFAULT_COPTS" ; then if test "$enable_check_compiler_flags" = "yes" ; then PAC_C_CHECK_COMPILER_OPTION( [$MPI_DEFAULT_COPTS], [ CFLAGS="$CFLAGS $MPI_DEFAULT_COPTS" ] ) else CFLAGS="$CFLAGS $MPI_DEFAULT_COPTS" fi fi # Set NEEDSPLIB to yes if link commands need both -l$MPILIBNAME # and -lp$MPILIBNAME. NEEDSPLIB=yes if test $enable_weak_symbols = yes ; then # Turn off weak symbols if they aren't available PAC_PROG_C_WEAK_SYMBOLS(,enable_weak_symbols=no) fi if test $enable_weak_symbols = "yes" ; then AC_DEFINE(USE_WEAK_SYMBOLS,1,[Define if weak symbols should be used]) NEEDSPLIB=no # Check for the ability to support multiple weak symbols if test "$pac_cv_prog_c_weak_symbols" = "pragma weak" ; then PAC_PROG_C_MULTIPLE_WEAK_SYMBOLS(AC_DEFINE(HAVE_MULTIPLE_PRAGMA_WEAK,1,[Define if multiple weak symbols may be defined])) fi fi export NEEDSPLIB AM_CONDITIONAL([BUILD_PROFILING_LIB],[test "$NEEDSPLIB" = "yes"]) # --------------------------------------------------------------------------- # determine rpath and other shared library flags for CC # src/env may not exist yet in a vpath build $MKDIR_P src/env cc_shlib_conf=src/env/cc_shlib.conf PAC_COMPILER_SHLIB_FLAGS([CC],[$cc_shlib_conf]) AC_SUBST_FILE([cc_shlib_conf]) # --------------------------------------------------------------------------- # Support for the language bindings: Fortran 77, Fortran 90, and C++ # # First, we handle the case of no explicit enable/disable option. In that # case, we look for a usable compiler. We cannot use the ac macros for this # because they abort the configure step if they fail to find a compiler # (earlier versions of autoconf did not have this behavior!). # # Second, we perform the langugage-specific tests, if necessary. This may # be relatively simple (C++) or complex (Fortran 77, including formation of # the encoded MPI handles). # # Note that the bindings support needs to know some of the properties of # the C compiler, so those tests (particularly for weak symbols) # must come first. # ---------------------------------------------------------------------------- # # First, determine whether we are/can support the language bindings # # Since F90/F90FLAGS are replaced by FC/FCFLAGS, rather than silently # substituting them, i.e. FC=$F90 and FCFLAGS=$F90FLAGS, we choose to emit # an error message and abort to avoid any ambiguous/hidden bug in choosing # Fortran90 compilers. if test -n "$F90" -o -n "$F90FLAGS" ; then AC_MSG_ERROR([F90 and F90FLAGS are replaced by FC and FCFLAGS respectively in this configure, please unset F90/F90FLAGS and set FC/FCFLAGS instead and rerun configure again.]) fi # ---------------------------------------------------------------------------- # Handle default choices for the Fortran compilers if test "$enable_f77" = "yes" ; then # Check for a Fortran compiler # FIXME already done earlier dnl PAC_PROG_F77 : fi if test "$enable_f77" = "yes" -a "$F77" = "" ; then # No Fortran 77 compiler found; abort AC_MSG_ERROR([No Fortran 77 compiler found. If you don't need to build any Fortran programs, you can disable Fortran support using --disable-f77 and --disable-fc. If you do want to build Fortran programs, you need to install a Fortran compiler such as gfortran or ifort before you can proceed.]) fi if test "$enable_f77" = yes ; then # Check if $MPI_DEFAULT_FOPTS is valid with $F77 if test "$enable_default_optimize" = "yes" \ -a -n "$MPI_DEFAULT_FOPTS" ; then if test "$enable_check_compiler_flags" = "yes" ; then PAC_F77_CHECK_COMPILER_OPTION( [$MPI_DEFAULT_FOPTS], [ FFLAGS="$FFLAGS $MPI_DEFAULT_FOPTS" ] ) else FFLAGS="$FFLAGS $MPI_DEFAULT_FOPTS" fi fi fi # # We need to know the name mangling for Fortran before testing for FC # compatibility (we need this because of the way we decide to generate # the Fortran 77 bindings) if test "$enable_f77" = yes ; then FLIBS_save="$FLIBS" FLIBS="" AC_F77_LIBRARY_LDFLAGS # The autoconf macro for finding FLIBS sometimes makes mistakes # (particularly with the Fujitsu frt compiler). This next step # first sees if the FLIBS is valid with the Fortran compiler PAC_PROG_F77_FLIBS_VALID # Now see if FLIBS works with the C compiler PAC_PROG_F77_CHECK_FLIBS # Check F77+FLAGS is compatible with CC+CFLAGS before using F77+CC. PAC_PROG_F77_OBJ_LINKS_WITH_C PAC_PROG_F77_LINKER_WITH_C # For name mangle, we need the library flags PAC_PROG_F77_NAME_MANGLE # Check whether additional libraries are needed when linking with C PAC_PROG_F77_AND_C_STDIO_LIBS AC_SUBST(F77_OTHER_LIBS) # Warn about mixed name mangling, since many of the tests will fail if test "$pac_cv_prog_f77_name_mangle" = "mixed" ; then AC_MSG_WARN([The compiler $F77 uses mixed case names. Fortran is monocase and many Fortran programs may use either upper or lower case names for MPI calls. Consider specifying a particular parameter to your Fortran compiler to select either upper or lower case names. For the Absoft compiler, -f selects lower case and -N109 selects upper case (if you use -f, also use -B108 to enable the iargc and getarg routines, which are needed for some tests and by many user programs). Specify new command line options by setting the environment variable FFLAGS to include the options (e.g., setenv FFLAGS "-f -B108"). In addition, make sure that your Fortran 90 compiler uses a compatible naming choice. For the Absoft Fortran 90, -YALL_NAMES=LCS selects lower case names and -B108 adds underscores to names, as required for iargc and getarg. Pass this information to configure with the FCFLAGS environment variable.]) # If Fortran implicitly enabled, disable it now. Otherwise, # abort the configure since warning messages are often lost in # the output. AC_MSG_ERROR([Aborting configure because of mixed case names in Fortran. Either select --disable-f77 or set FFLAGS to force the compiler to select monocase names]) fi # The MPI standard requires that MPI_Init in any language initialize # MPI in all languages. This can be a problem when objects produced # by the Fortran compiler require symbols from the Fortran runtime # (making linking C-only programs unnecessarily difficult). What we test # here is whether the much more restricted needs of the Fortran # initialize can be met with no special use of the Fortran runtime PAC_F77_INIT_WORKS_WITH_C if test "$pac_f_init_works_with_c" = "yes" ; then AC_DEFINE(HAVE_MPI_F_INIT_WORKS_WITH_C,1,[Define if the Fortran init code for MPI works from C programs without special libraries]) fi fi # FC requires F77 as well. If the user disabled f77, do not run the # next test; instead, drop into the warning message # Set a default value for fc works with f77. This value is # set to no *only* if fc was selected but was not compatible with f77 fc_with_f77=yes if test "$enable_fc" = "yes" -a "$enable_f77" = yes ; then enable_fc=no if test -n "$FC" ; then # If we allow multiple weak symbols, we should test a name # that does not contain an underscore. The Fortran binding uses # this rule for enabling multiple weak symbols: # if defined(USE_WEAK_SYMBOLS) && !defined(USE_ONLY_MPI_NAMES) && # defined(HAVE_MULTIPLE_PRAGMA_WEAK) && # defined(F77_NAME_LOWER_2USCORE) # testRoutine="t1_2" if test "$pac_cv_prog_c_multiple_weak_symbols" = "yes" -a \ "$enable_weak_symbols" = "yes" -a \ "$pac_cv_prog_f77_name_mangle" = "lower doubleunderscore" ; then testRoutine="t12" fi PAC_FC_AND_F77_COMPATIBLE(fc_with_f77=yes,fc_with_f77=no,$testRoutine) if test "$fc_with_f77" != yes ; then enable_fc=no AC_MSG_ERROR([The selected Fortran 90 compiler $FC does not work with the selected Fortran 77 compiler $F77. Use the environment variables FC and F77 respectively to select compatible Fortran compilers. The check here tests to see if a main program compiled with the Fortran 90 compiler can link with a subroutine compiled with the Fortran 77 compiler.]) elif test "$fc_with_f77" = "yes" ; then # If we got here, there is a Fortran 90 compiler that we can use enable_fc=yes fi elif test "$pac_cv_prog_fc_works" = no; then AC_MSG_WARN([Use --disable-fc to keep configure from searching for a Fortran 90 compiler]) fi if test "$enable_fc" = "yes" -a "$FC" = "" ; then # No Fortran 90 compiler found; abort AC_MSG_ERROR([No Fortran 90 compiler found. If you don't need to build any Fortran 90 programs, you can disable Fortran 90 support using --disable-fc. If you do want to build Fortran 90 programs, you need to install a Fortran 90 compiler such as gfortran or ifort before you can proceed.]) fi fi if test "$enable_fc" = "yes" -a "$enable_f77" != "yes" ; then # Fortran 90 support requires compatible Fortran 77 support AC_MSG_ERROR([ Fortran 90 support requires compatible Fortran 77 support. To force the use of the Fortran 90 compiler for Fortran 77, do not use configure option --disable-f77, and set the environment variable F77 to the name of the Fortran 90 compiler, or \$FC. If you do not want any Fortran support, use configure options --disable-f77 and --disable-fc.]) # We should probably do the compatibility test as well enable_f77=yes fi # ---------------------------------------------------------------------------- # Now test for Fortran compiler characteristics # ---------------------------------------------------------------------------- if test "$enable_f77" = "yes" ; then # determine rpath and other shared library flags for F77 f77_shlib_conf=src/env/f77_shlib.conf PAC_COMPILER_SHLIB_FLAGS([F77],[$f77_shlib_conf]) AC_SUBST_FILE([f77_shlib_conf]) AC_LANG_FORTRAN77 PAC_PROG_F77_EXCLAIM_COMMENTS(has_exclaim="yes",has_exclaim="no") PAC_PROG_F77_HAS_INCDIR(src) PAC_PROG_F77_LIBRARY_DIR_FLAG AC_SUBST(MPIFPMPI) if test "$MPI_WITH_PMPI" = "no" ; then # If the PMPI routines are not in the same library with the MPI # routines, we may need to remove the pmpi declarations PAC_PROG_F77_ALLOWS_UNUSED_EXTERNALS([MPIFPMPI=",PMPI_WTIME,PMPI_WTICK"],[ MPIFPMPI=""; AC_MSG_WARN([Removed PMPI_WTIME and PMPI_WTICK from mpif.h])]) else MPIFPMPI=",PMPI_WTIME,PMPI_WTICK" fi # Once we have name mangle, we can try to limit the number of needed libs dnl F77_IN_C_LIBS is not needed currently because mpirinitf_() in setbotf.f dnl is called in initthread.c only when FLIBS is not needed to initialize dnl Fortran constants from a C main, See PAC_F77_INIT_WORKS_WITH_C. dnl PAC_PROG_F77_IN_C_LIBS dnl AC_SUBST(F77_IN_C_LIBS) # Most systems allow the Fortran compiler to process .F and .F90 files # using the C preprocessor. However, some systems either do not # allow this or have serious bugs (OSF Fortran compilers have a bug # that generates an error message from cpp). The following test # checks to see if .F works, and if not, whether "cpp -P -C" can be used # This is needed for Mac OSX 10.5 PAC_F77_WORKS_WITH_CPP([F77CPP]) AC_SUBST(F77CPP) # Check that the Fortran compiler will allow us to pass arguments # of different types (e.g., for MPI_Send) PAC_PROG_F77_MISMATCHED_ARGS(addarg,yes) if test "X$addarg" != "X" ; then # We could add the names of all of the MPI routines that # accept different types. Instead, we fail cleanly. # Some Fortran compilers allow you to turn off checking for # mismatched arguments for *all* routines. Adding an argument # that turns off checking for *everything* is not something that # configure should do - if the user wants this, they can follow # the instructions in the following error message. AC_MSG_ERROR([The Fortran compiler $F77 does not accept programs that call the same routine with arguments of different types without the option $addarg. Rerun configure with FFLAGS=$addarg]) fi bindings="$bindings f77" AC_DEFINE(HAVE_FORTRAN_BINDING,1,[Define if Fortran is supported]) # Also define the name FORTRAN_BINDING for use in #if @FORTRAN_BINDING@.. FORTRAN_BINDING=1 fi dnl By modifying mpif.h to use ! for comments, it can work with many f90 dnl compilers without creating a separate version. dnl Note that this is run AFTER the AC_OUTPUT actions AC_OUTPUT_COMMANDS([if test "$enable_f77" = yes ; then if test "$has_exclaim" = "yes" ; then sed -e 's/^C/\!/g' src/binding/f77/mpif.h > src/include/mpif.h cp src/include/mpif.h src/binding/f77/mpif.h else cp src/binding/f77/mpif.h src/include fi if test "$has_fort_real8" = "yes" ; then sed -e 's/DOUBLE PRECISION/REAL*8/g' src/include/mpif.h > src/include/mpif.h.new mv src/include/mpif.h.new src/include/mpif.h cp src/include/mpif.h src/binding/f77/mpif.h fi fi], master_top_srcdir=$master_top_srcdir enable_f77=$enable_f77 enable_fc=$enable_fc has_exclaim=$has_exclaim has_fort_real8=$pac_cv_fort_real8 includebuild_dir=$includebuild_dir libbuild_dir=$libbuild_dir bashWorks=$bashWorks) if test "$enable_fc" = "yes" ; then if test "$enable_f77" != "yes" ; then AC_MSG_WARN([Fortran 90 requires Fortran 77]) enable_fc=no else bindingsubsystems="$bindingsubsystems src/binding/f90" bindings="$bindings f90" fi fi # Set defaults for these values so that the Makefile in src/bindings/f90 # is valid even if fc is not enabled (this is necessary for the # distclean target) MPIMODNAME=mpi MPICONSTMODNAME=mpi_constants MPISIZEOFMODNAME=mpi_sizeofs MPIBASEMODNAME=mpi_base if test "$enable_fc" = "yes" ; then # determine rpath and other shared library flags for FC fc_shlib_conf=src/env/fc_shlib.conf PAC_COMPILER_SHLIB_FLAGS([FC],[$fc_shlib_conf]) AC_SUBST_FILE([fc_shlib_conf]) # Determine characteristics of the Fortran 90 compiler # Find a Fortran 90 compiler. Sets FC # Work around bug in autoconf that adds -g to FCFLAGS saveFCFLAGS="$FCFLAGS" dnl FIXME XXX DJG this needs to be reconciled with our separate use of dnl AC_PROG_FC earlier dnl PAC_PROG_FC PAC_PROG_FC_WORKS FCFLAGS=$saveFCFLAGS if test "$pac_cv_prog_fc_works" = no ; then # Reject this compiler if test -n "$FC" ; then fc_rejected=yes oldFC="$FC" FC="" fi fi # Determine the extension for Fortran 90 files (it isn't always .f90) FCEXT=$ac_fc_srcext AC_SUBST(FCEXT) if test -z "$FC" ; then if test "$fc_rejected" = "yes" ; then AC_MSG_ERROR([Could not find a usable Fortran 90 compiler. The compiler $oldFC may be incompatible with the Fortran 77 compiler $F77; check the output of configure and consult the installation manuals]) else AC_MSG_ERROR([Could not find a usable Fortran 90 compiler.]) fi fi # Find the extension that this compiler uses for modules. # Sets FCMODEXT (and adds it to the list substed) # Sets FCMODINCFLAG (and adds it to the list substed) PAC_FC_MODULE AC_SUBST(FCMODINCSPEC) if test -z "$FCMODOUTFLAG" ; then AC_MSG_ERROR([FCMODOUTFLAG could not be determined but is critical for the current Fortran build system]) fi if test "$pac_cv_fc_module_case" = "upper" ; then MPIMODNAME=MPI MPICONSTMODNAME=MPI_CONSTANTS MPISIZEOFMODNAME=MPI_SIZEOFS MPIBASEMODNAME=MPI_BASE else MPIMODNAME=mpi MPICONSTMODNAME=mpi_constants MPISIZEOFMODNAME=mpi_sizeofs MPIBASEMODNAME=mpi_base fi AC_SUBST(MPIMODNAME) AC_SUBST(MPICONSTMODNAME) AC_SUBST(MPISIZEOFMODNAME) AC_SUBST(MPIBASEMODNAME) # Assume that all Fortran 90 compilers accept -I for include directories FCINC=-I AC_SUBST(FCINC) FCINCFLAG=-I AC_SUBST(FCINCFLAG) # Check if $MPI_DEFAULT_FCOPTS is valid with $F90 if test "$enable_default_optimize" = "yes" \ -a -n "$MPI_DEFAULT_FCOPTS" ; then if test "$enable_check_compiler_flags" = "yes" ; then PAC_FC_CHECK_COMPILER_OPTION( [$MPI_DEFAULT_FCOPTS], [ FCFLAGS="$FCFLAGS $MPI_DEFAULT_FCOPTS" ] ) else FCFLAGS="$FCFLAGS $MPI_DEFAULT_FCOPTS" fi fi # Most systems allow the Fortran compiler to process .F and .F90 files # using the C preprocessor. However, some systems either do not # allow this or have serious bugs (OSF Fortran compilers have a bug # that generates an error message from cpp). The following test # checks to see if .F works, and if not, whether "cpp -P -C" can be used PAC_FC_WORKS_WITH_CPP([FCCPP]) AC_SUBST(FCCPP) # Check whether additional libraries are needed when linking with C PAC_PROG_FC_AND_C_STDIO_LIBS AC_SUBST(FC_OTHER_LIBS) # ------------------------------------------------ fi # ---------------------------------------------------------------------------- # We previously allowed "default" as a valid value for $enable_cxx. Now we # assume its available by default and error out if it doesn't work (just like # F77 & FC). The user must pass "--disable-cxx" in order to successfully # complete configure in this case. if test "$enable_cxx" = "default" ; then AC_MSG_ERROR([aborting because "--enable-cxx=default" is no longer a supported value]) fi if test "$enable_cxx" = "yes" ; then # Another bug in autoconf. The checks for the C++ compiler do not # ensure that you can link a program that is built with the C++ # compiler. We've seen this error with gcc and icc, particularly # when those compilers accept C++ language elements but are unable # to link programs that are really C++. For that reason, # we've added a test to see if the C++ compiler can produce # an executable. AC_CACHE_CHECK([whether the C++ compiler $CXX can build an executable], pac_cv_cxx_builds_exe,[ AC_LANG_PUSH([C++]) AC_TRY_LINK([ class mytest { int a; public: mytest(void) : a(1) {} ~mytest(void) {} };],[mytest a;], pac_cv_cxx_builds_exe=yes, pac_cv_cxx_builds_exe=no) AC_LANG_POP([C++]) ]) if test "$pac_cv_cxx_builds_exe" != yes ; then AC_MSG_ERROR([Aborting because C++ compiler does not work. If you do not need a C++ compiler, configure with --disable-cxx]) fi # Recent failures have come when a standard header is loaded # The Intel icpc 10.x compiler fails with if gcc 4.2 is installed. AC_CACHE_CHECK([whether C++ compiler works with string],pac_cv_cxx_compiles_string,[ AC_LANG_PUSH([C++]) AC_TRY_COMPILE([#include ],[return 0;],pac_cv_cxx_compiles_string=yes,pac_cv_cxx_compiles_string=no) AC_LANG_POP([C++]) ]) if test "$pac_cv_cxx_compiles_string" != yes ; then AC_MSG_WARN([The C++ compiler $CXX cannot compile a program containing the header - this may indicate a problem with the C++ installation. Consider configuing with --disable-cxx]) fi AC_LANG_CPLUSPLUS AX_CXX_EXCEPTIONS AX_CXX_BOOL AX_CXX_NAMESPACES if test "$ac_cv_cxx_namespaces" != "yes" ; then AC_MSG_ERROR([Namespaces are required for the MPI C++ interface]) fi HAVE_CXX_EXCEPTIONS=0 AC_SUBST(HAVE_CXX_EXCEPTIONS) if test "$ac_cv_cxx_exceptions" = "yes" ; then HAVE_CXX_EXCEPTIONS=1 fi # iostream and math are needed for examples/cxx/cxxpi.cxx AC_CACHE_CHECK([whether available],pac_cv_cxx_has_iostream,[ AC_TRY_COMPILE([ #include ],[using namespace std;],pac_cv_cxx_has_iostream=yes,pac_cv_cxx_has_iostream=no)]) AX_CXX_NAMESPACE_STD AC_CACHE_CHECK([whether available],pac_cv_cxx_has_math,[ AC_TRY_COMPILE([ #include ],[using namespace std;],pac_cv_cxx_has_math=yes,pac_cv_cxx_has_math=no)]) # GNU changed the calling conventions between minor releases (!!!) # This is too hard to detect, but we should be able to detect # the version mismatch. By default, we set the GNU version to 0. # In a cross-compiling environment, these can be set with environment # variables, either directly or through the standard "CROSS" variable. if test -z "$GNUCXX_VERSION" ; then if test -n "$CROSS_GNUCXX_VERSION" ; then GNUCXX_VERSION=$CROSS_GNUCXX_VERSION else GNUCXX_VERSION=0 fi fi if test -z "$GNUCXX_MINORVERSION" ; then if test -n "$CROSS_GNUCXX_MINORVERSION" ; then GNUCXX_MINORVERSION=$CROSS_GNUCXX_MINORVERSION else GNUCXX_MINORVERSION=0 fi fi if test "$cross_compiling" = "no" -a "$ac_compiler_gnu" = "yes" -a \ "$GNUCXX_VERSION" = 0 -a "$GNUCXX_MINORVERSION" = 0 ; then ac_vals="" AC_MSG_CHECKING([for GNU g++ version]) AC_TRY_RUN([#include int main() { int v = -1, m = -1; FILE *fp = fopen("conftest.out","w"); #ifdef __GNUC_MINOR__ m = __GNUC_MINOR__; #endif #ifdef __GNUC__ v = __GNUC__; #endif fprintf( fp, "v=%d, m=%d\n", v, m ); fclose( fp ); return 0; }],ac_vals=`cat conftest.out`) if test -n "$ac_vals" ; then v=`echo "$ac_vals" | sed -e 's/v=\(.*\),.*/\1/'` m=`echo "$ac_vals" | sed -e 's/.*m=\(.*\)/\1/'` AC_MSG_RESULT([$v . $m]) GNUCXX_VERSION=$v GNUCXX_MINORVERSION=$m else AC_MSG_RESULT([unknown]) fi fi AC_SUBST(GNUCXX_VERSION) AC_SUBST(GNUCXX_MINORVERSION) bindings="$bindings cxx" AC_DEFINE(HAVE_CXX_BINDING,1,[Define if C++ is supported]) INCLUDE_MPICXX_H='#include "mpicxx.h"' AC_SUBST(INCLUDE_MPICXX_H) # In order to support the Fortran datatypes within C++, # # FORTRAN_BINDING always has a CPP-time value of either 0 or 1, # so that it may be used in #if statements without adding to # the CPP name space AC_SUBST(FORTRAN_BINDING) # Special C++ datatypes. Set to DATATYPE NULL first; we'll # replace the ones that we have later, after we have determined # the C datatypes MPIR_CXX_BOOL=0x0c000000 MPIR_CXX_COMPLEX=0x0c000000 MPIR_CXX_DOUBLE_COMPLEX=0x0c000000 MPIR_CXX_LONG_DOUBLE_COMPLEX=0x0c000000 AC_SUBST(MPIR_CXX_BOOL) AC_SUBST(MPIR_CXX_COMPLEX) AC_SUBST(MPIR_CXX_DOUBLE_COMPLEX) AC_SUBST(MPIR_CXX_LONG_DOUBLE_COMPLEX) # determine rpath and other shared library flags for CXX cxx_shlib_conf=src/env/cxx_shlib.conf PAC_COMPILER_SHLIB_FLAGS([CXX],[$cxx_shlib_conf]) AC_SUBST_FILE([cxx_shlib_conf]) fi if test "$enable_cxx" = yes; then # Check if $MPI_DEFAULT_CXXOPTS is valid with $CXX if test "$enable_default_optimize" = "yes" \ -a -n "$MPI_DEFAULT_CXXOPTS" ; then if test "$enable_check_compiler_flags" = "yes" ; then PAC_CXX_CHECK_COMPILER_OPTION( [$MPI_DEFAULT_CXXOPTS], [ CXXFLAGS="$CXXFLAGS $MPI_DEFAULT_CXXOPTS" ] ) else CXXFLAGS="$CXXFLAGS $MPI_DEFAULT_CXXOPTS" fi fi fi AC_SUBST(bindings) # ---------------------------------------------------------------------------- # End of the bindings support # ---------------------------------------------------------------------------- AC_LANG_C # # ---------------------------------------------------------------------------- # Done with the basic argument processing and decisions about which # subsystems to build # ---------------------------------------------------------------------------- # Look for perl. Perl is used *only* in the tests of the commands such as # mpiexec, mpicc, etc, in test/commands, and in some of the utility # programs for processing log files . If perl is not found, # MPICH may still be built and used. # We need the full path to perl since we'll use it as the interpreter for # a shell script. AC_PATH_PROG(PERL,perl) # Look for ar. If we fail, abort AC_CHECK_PROGS(AR,ar) if test -z "$AR" ; then AC_MSG_ERROR([The program ar is required for building MPICH. Make sure that your path includes ar]) fi # FIXME: this is probably unnecessary now that we only do one "ar" at the end # (via libtool). If anything, it's likely to cause problems instead. # AR_FLAGS provides a way to potentially improve build performance on Mac OSX AR_FLAGS=cr # this logic is lame, should really write a real test at some point AS_CASE([$host], # Barry proposes AR_FLAGS="Scq" in trac#754, but that won't work correctly for re-builds [*-*-darwin*], [AR_FLAGS=Scr] ) AC_ARG_VAR(AR_FLAGS,[AR command flags]) # causes AC_SUBST too # Note that we set RANLIB to true if we don't find it (some systems neither # need it nor provide it) AC_CHECK_PROGS(RANLIB,ranlib,true) # Check for the killall program; this can be used in some of the tests # in test/commands AC_CHECK_PROGS(KILLALL,killall,true) # Does xargs need the -r option to handle the case where the input # is empty (gnu utils do, Mac OSX does not accept -r) xargs_out=`echo "" | xargs ls | wc -l | sed -e 's/ //g'` if test "$xargs_out" != "0" ; then XARGS_NODATA_OPT=-r fi AC_SUBST(XARGS_NODATA_OPT) AC_PROG_INSTALL PAC_PROG_CHECK_INSTALL_WORKS # # On Mac OS/X, install breaks libraries unless used with the -p switch dnl FIXME not necessary now that we are using libtool dnl PAC_PROG_INSTALL_BREAKS_LIBS # We also need mkdir -p. PAC_PROG_MKDIR_P PAC_PROG_MAKE # # Check for bash to allow more robust shell scripts AC_PATH_PROG(BASH_SHELL,bash) # # Confirm that bash has working arrays. We can use this to # build more robust versions of the scripts (particularly the # compliation scripts) by taking advantage of the array features in # bash. bashWorks=no if test -x "$BASH_SHELL" ; then changequote(%%,::)dnl cat >>conftest <&1 >/dev/null ; then bashWorks=yes else bashWorks=no fi rm -f conftest* AC_MSG_RESULT($bashWorks) fi dnl BUILD_BASH_SCRIPTS used to be an AC_SUBST AM_CONDITIONAL([BUILD_BASH_SCRIPTS], [test "x$bashWorks" = xyes]) # ---------------------------------------------------------------------------- # At this point, we've finally settled on the value of PMPILIBNAME. We # can now set NEEDSPLIB. if test "$NEEDSPLIB" = yes -a "$PMPILIBNAME" = "$MPILIBNAME" ; then NEEDSPLIB=no fi # Set the defaults for the Fortran libraries to be the same as the C libraries if test -z "$MPIFLIBNAME" ; then MPIFLIBNAME=$MPILIBNAME fi if test -z "$PMPIFLIBNAME" ; then PMPIFLIBNAME=$PMPILIBNAME fi # ---------------------------------------------------------------------------- # # Add the steps for debugger support BUILD_TVDLL=no if test "$enable_debuginfo" = "yes" ; then # We can build the Totalview interface DLL only if we know how to build # shared libraries. # FIXME is this really the right test? # No. Before MPICH 1.5, there was the capability to build the debugger # libraries without forcing the build of shared libraries for everything. # There may be some way to restore this capability, but until then, we # at least cause the configure to cleanly fail with a clear error message if test "X$enable_shared" = "Xyes" ; then BUILD_TVDLL=yes else AC_MSG_ERROR([Building with --enable-debuginfo now requires building with shared library support. Add --enable-shared and reconfigure]) fi # One more nasty problem. Totalview relies on debugger symbols # being present in the executable. Some experimental versions of # gcc (3.2 20020329 for ia64) do *not* include the object symbols # when debugging. For HPUX, the necessary linking options are # +noobjdebug # for C, Fortran, and C++. We don't have a good test for this yet, # so we add a warning if test "$ac_cv_prog_gcc" = "yes" ; then AC_MSG_WARN([Some versions of gcc do not include debugging information within the executable. Totalview requires this information to detect an MPICH code. If you have trouble, try linking with the additional option +noobjdebug on all link lines (consider adding it to LDFLAGS)]) fi # The debugger library name cannot be set until we know the extension # of shared libraries - the name is so on most Unix system, dylib on OS X. AC_DEFINE(HAVE_DEBUGGER_SUPPORT,1,[Define if debugger support is included]) # The debugger support requires a shared library. This is handled # below, after we check for compiler support for shared libraries # Note: if libdir contains exec_prefix, handle the fact that the # default exec_prefix is NONE, which (much later in configure) # gets turned into the value of prefix ##ENVVAR: MPICH_DEBUGLIBNAME - Set this environment variable to ## override the default name of the debugger support library. ## The default name is libtvmpich.$SHLIB_EXT (e.g., libtvmpich.so for ## most Unix versions, libtvmpich.dylib for Mac OSX). ##ENVVAR END: # We are cheating a bit here and reaching inside of the libtool macros to # extract the correct shared library extension. It would be nice if this # were publicly available in at least the same way that $libext is. eval SHLIB_EXT='"'$shrext_cmds'"' if test -z "$MPICH_DEBUGLIBNAME" ; then DEBUGLIBNAME=libtvmpich.$SHLIB_EXT else # FIXME DJG I don't think this can be supported arbitrarily by the new # build system (I'm not sure it was supported correctly by the old # system either) AC_MSG_WARN([overriding MPICH_DEBUGLIBNAME is currently untested and probably does not work]) DEBUGLIBNAME=$MPICH_DEBUGLIBNAME fi if test "x$exec_prefix" = xNONE ; then saveExecPrefix=$exec_prefix exec_prefix=$prefix eval dlldir=$libdir/$DEBUGLIBNAME exec_prefix=$saveExecPrefix else eval dlldir=$libdir/$DEBUGLIBNAME fi dlldir='"'$dlldir'"' AC_DEFINE_UNQUOTED(MPICH_INFODLL_LOC,$dlldir,[Define as the name of the debugger support library]) fi # used by automakefiles to conditionally build the DLL AM_CONDITIONAL([BUILD_DEBUGGER_DLL], [test x$BUILD_TVDLL = xyes]) # ---------------------------------------------------------------------------- nameserv_name="" # Get the default nameserver, if no nameserver was selected. A process # manager may advertise a nameserver name by setting the variable # MPID_PM_NAMESERVER. if test "$with_namepublisher" = "default" ; then if test -n "$MPID_PM_NAMESERVER" ; then with_namepublisher=$MPID_PM_NAMESERVER else # The default is to use a file to communicate published names with_namepublisher=file fi fi if test "$with_namepublisher" != no -a "$with_namepublisher" != "none" ; then case "$with_namepublisher" in none|no) ;; # Removed ldap namepublisher hook - we no longer support or distribute # the ldap-based name server file*) # Note that we always build the Makefile for the file version because # this name publisher is really too simple to require a # separate configure, and we might as well include a basic # name publisher with any MPICH distribution # We DO need to extract the directory name that is used for writing # the files, with the User's home directory as the default nameserv_name="file" basedir=`echo $with_namepublisher | sed -e 's/file://'` if test "$basedir" = "$with_namepublisher" ; then # Reset since no directory was set. basedir='"."'; fi AC_DEFINE_UNQUOTED(FILE_NAMEPUB_BASEDIR,$basedir,[Directory to use in namepub]) AC_DEFINE(USE_FILE_FOR_NAMEPUB,1,[Define if file should be used for name publisher]) ;; mpd) nameserv_name="mpd" # The mpd nameserver is specific to the mpd process manager foundMPD=no for pm_name in $pm_names ; do if test "$pm_name" = "mpd" ; then foundMPD=yes break fi done if test "$foundMPD" = no ; then AC_MSG_ERROR([The mpd nameserver requires the mpd process manager]) fi ;; *) # Check for a new namepublisher dir=$with_namepublisher # If we later need args, here is where we can strip them off of the # with argument if test -d "$use_top_srcdir/src/nameserv/$dir" ; then if test -x "$use_top_srcdir/src/nameserv/$dir/configure" ; then # Run the configure in this directory if necessary subsystems="$subsystems src/nameserv/$dir" fi nameserv_name=$dir else AC_MSG_WARN([Unknown name publisher $with_namepublisher]) fi ;; esac fi if test -n "$nameserv_name" ; then AC_DEFINE(HAVE_NAMEPUB_SERVICE,1,[Define if a name publishing service is available]) fi AM_CONDITIONAL([BUILD_NAMEPUB_FILE],[test "X$nameserv_name" = "Xfile"]) AM_CONDITIONAL([BUILD_NAMEPUB_MPD],[test "X$nameserv_name" = "Xmpd"]) AM_CONDITIONAL([BUILD_NAMEPUB_PMI],[test "X$nameserv_name" = "Xpmi"]) # In case the documentation targets are used, find doctext and attempt to # find the source for the doctext LaTeX style files. Use "false" if # doctext is not found AC_PATH_PROG(DOCTEXT,doctext,false) export DOCTEXT AC_SUBST(DOCTEXT) # ---------------------------------------------------------------------------- # Check for C compiler characteristics AC_C_CONST AC_C_VOLATILE AC_C_RESTRICT AC_C_INLINE PAC_C_GNU_ATTRIBUTE # We need to check for the endianess in order to implement the # "external32" representations. This defines "WORDS_BIGENDIAN when # the system is bigendian. # As of autoconf 2.62, this macro takes an additional argument for systems # that can produce object files for either endianess. # With the as-always-incompatible-with-every-version autoconf, the # arguments for this macro *changed* in 2.62 to # (if-bigendian,if-littleendian,unknown,universal) # The fourth argument is new. # Also note that the definition emitted by autoheader requires that gcc # be used to compile the programs - other compilers may not define the # non-standard __BIG_ENDIAN__ or __LITTLE_ENDIAN__ CPP names on which # autoconf 2.62 now depends. byteOrdering=unknown AC_C_BIGENDIAN(byteOrdering=big,byteOrdering=little,,byteOrdering=universal) case $byteOrdering in big) # Nothing to do - the c_bigendian macro takes care of it : ;; little) AC_DEFINE(WORDS_LITTLEENDIAN,1,[Define if words are little endian]) ;; universal) AC_DEFINE(WORDS_UNIVERSAL_ENDIAN,1,[Define if configure will not tell us, for universal binaries]) ;; unknown) AC_MSG_ERROR([Unable to determine endianess]) ;; esac # We only need this test if we are using Fortran if test "$enable_f77" ; then PAC_PROG_C_UNALIGNED_DOUBLES(, [AC_MSG_WARN(Your C compiler $CC does not support unaligned accesses to doubles. This is required for interoperation with Fortran (the Fortran standard requires it). You may need to specify an additional argument to your C compiler to force it to allow unaligned accesses.)]) fi # Check for __func__ (defined in C99) or __FUNCTION__ (defined in older GCC) AC_CACHE_CHECK([whether $CC supports __func__],pac_cv_cc_has___func__, [AC_TRY_COMPILE([], [const char *cp = __func__; ],pac_cv_cc_has___func__=yes, pac_cv_cc_has___func__=no)]) if test "$pac_cv_cc_has___func__" != "yes" ; then AC_CACHE_CHECK([whether $CC supports __FUNCTION__],pac_cv_cc_has___FUNCTION__, [AC_TRY_COMPILE([], [const char *cp = __FUNCTION__;],pac_cv_cc_has___FUNCTION__=yes, pac_cv_cc_has___FUNCTION__=no)]) fi # ---------------------------------------------------------------------------- # Check on support for long double and long long types. Do this before the # structure alignment test because it will test for including those # types as well. In addition, allow the device to suppress support for these # optional C types by setting MPID_NO_LONG_DOUBLE and/or MPID_NO_LONG_LONG # to yes. if test "$MPID_NO_LONG_DOUBLE" != "yes" ; then AC_CACHE_CHECK([whether long double is supported], pac_cv_have_long_double,[ AC_TRY_COMPILE(,[long double a;], pac_cv_have_long_double=yes,pac_cv_have_long_double=no)]) if test "$pac_cv_have_long_double" = "yes" ; then AC_DEFINE(HAVE_LONG_DOUBLE,1,[Define if long double is supported]) fi fi if test "$MPID_NO_LONG_LONG" != "yes" ; then AC_CACHE_CHECK([whether long long is supported], pac_cv_have_long_long,[ AC_TRY_COMPILE(,[long long a;], pac_cv_have_long_long=yes,pac_cv_have_long_long=no)]) if test "$pac_cv_have_long_long" = "yes" ; then AC_DEFINE(HAVE_LONG_LONG_INT,1,[Define if long long is supported]) fi fi # ---------------------------------------------------------------------------- # Get default structure alignment for integers dnl PAC_C_MAX_INTEGER_ALIGN places the default alignment into dnl pac_cv_c_max_integer_align, with possible values including dnl packed (byte), largest, two, four, eight (or other failure message). PAC_C_MAX_INTEGER_ALIGN if test "$pac_cv_c_max_integer_align" = "packed" ; then pac_cv_c_struct_align_nr=1 elif test "$pac_cv_c_max_integer_align" = "two" ; then pac_cv_c_struct_align_nr=2 elif test "$pac_cv_c_max_integer_align" = "four" ; then pac_cv_c_struct_align_nr=4 elif test "$pac_cv_c_max_integer_align" = "eight" ; then pac_cv_c_struct_align_nr=8 fi if test -n "$pac_cv_c_struct_align_nr" ; then AC_DEFINE_UNQUOTED(HAVE_MAX_INTEGER_ALIGNMENT,$pac_cv_c_struct_align_nr,[Controls byte alignment of integer structures (for MPI structs)]) AC_DEFINE_UNQUOTED(HAVE_MAX_STRUCT_ALIGNMENT,$pac_cv_c_struct_align_nr,[Controls byte alignment of structures (for aligning allocated structures)]) fi # Get default structure alignment for floating point types dnl PAC_C_MAX_FP_ALIGN places the default alignment into dnl pac_cv_c_max_fp_align, with possible values including dnl packed (byte), largest, two, four, eight (or other failure message). PAC_C_MAX_FP_ALIGN if test "$pac_cv_c_max_fp_align" = "packed" ; then pac_cv_c_fp_align_nr=1 elif test "$pac_cv_c_max_fp_align" = "two" ; then pac_cv_c_fp_align_nr=2 elif test "$pac_cv_c_max_fp_align" = "four" ; then pac_cv_c_fp_align_nr=4 elif test "$pac_cv_c_max_fp_align" = "eight" ; then pac_cv_c_fp_align_nr=8 elif test "$pac_cv_c_max_fp_align" = "sixteen" ; then pac_cv_c_fp_align_nr=16 elif test "$pac_cv_c_max_fp_align" = "largest" ; then AC_MSG_ERROR([Configure detected unsupported structure alignment rules.]) fi if test -n "$pac_cv_c_fp_align_nr" ; then AC_DEFINE_UNQUOTED(HAVE_MAX_FP_ALIGNMENT,$pac_cv_c_fp_align_nr,[Controls byte alignment of structures with floats, doubles, and long doubles (for MPI structs)]) fi # Test for the alignment of structs containing only long doubles. if test "$pac_cv_have_long_double" = yes ; then # Check for alignment of just float and double (no long doubles) PAC_C_MAX_DOUBLE_FP_ALIGN PAC_C_MAX_LONGDOUBLE_FP_ALIGN # FIXME: If this alignment is not the same as that for all float types, # we need to do something else in the alignment rule code. if test "$pac_cv_c_max_fp_align" != "$pac_cv_c_max_longdouble_fp_align" -o \ "$pac_cv_c_max_fp_align" != "$pac_cv_c_max_double_fp_align" ; then AC_MSG_WARN([Structures containing long doubles may be aligned differently from structures with floats or longs. MPICH does not handle this case automatically and you should avoid assumed extents for structures containing float types.]) double_align=-1 case $pac_cv_c_max_double_fp_align in packed) double_align=1 ;; two) double_align=2 ;; four) double_align=4 ;; eight) double_align=8 ;; esac longdouble_align=-1 case $pac_cv_c_max_longdouble_fp_align in packed) longdouble_align=1 ;; two) longdouble_align=2 ;; four) longdouble_align=4 ;; eight) longdouble_align=8 ;; sixteen)longdouble_align=16 ;; esac AC_DEFINE_UNQUOTED(HAVE_MAX_DOUBLE_FP_ALIGNMENT,$double_align,[Controls byte alignment of structs with doubles]) AC_DEFINE_UNQUOTED(HAVE_MAX_LONG_DOUBLE_FP_ALIGNMENT,$longdouble_align,[Controls byte alignment of structs with long doubles]) fi fi # Test for weird struct alignment rules that vary padding based on # size of leading type only. PAC_C_DOUBLE_POS_ALIGN if test "$pac_cv_c_double_pos_align" = "yes" ; then AC_DEFINE_UNQUOTED(HAVE_DOUBLE_POS_ALIGNMENT,1,[Controls how alignment is applied based on position of doubles in the structure]) fi # Test for same weird issues with long long int. PAC_C_LLINT_POS_ALIGN if test "$pac_cv_c_llint_pos_align" = "yes" ; then AC_DEFINE_UNQUOTED(HAVE_LLINT_POS_ALIGNMENT,1,[Controls how alignment is applied based on position of long long ints in the structure]) fi # Test for double alignment not following all our other carefully constructed rules PAC_C_DOUBLE_ALIGNMENT_EXCEPTION if test "$pac_cv_c_double_alignment_exception" = "four" ; then AC_DEFINE_UNQUOTED(HAVE_DOUBLE_ALIGNMENT_EXCEPTION,4,[Controls how alignment of doubles is performed, separate from other FP values]) fi # Test whether pointers can be aligned on a int boundary or require # a pointer boundary. AC_MSG_CHECKING([for alignment restrictions on pointers]) AC_TRY_RUN( changequote(<<,>>) struct foo { int a; void *b; }; int main() { int buf[10]; struct foo *p1; p1=(struct foo*)&buf[0]; p1->b = (void *)0; p1=(struct foo*)&buf[1]; p1->b = (void *)0; return 0; changequote([,]) },pac_cv_pointers_have_int_alignment=yes,pac_cv_pointers_have_int_alignment=no,pac_cv_pointers_have_int_alignment=unknown) if test "$pac_cv_pointers_have_int_alignment" != "yes" ; then AC_DEFINE(NEEDS_POINTER_ALIGNMENT_ADJUST,1,[define if pointers must be aligned on pointer boundaries]) AC_MSG_RESULT([pointer]) else AC_MSG_RESULT([int or better]) fi # There are further alignment checks after we test for int64_t etc. below. # Get the size of the C types for encoding in the basic datatypes and for # the specific-sized integers AC_CHECK_SIZEOF(char) AC_CHECK_SIZEOF(unsigned char) AC_CHECK_SIZEOF(short) AC_CHECK_SIZEOF(unsigned short) AC_CHECK_SIZEOF(int) AC_CHECK_SIZEOF(unsigned int) AC_CHECK_SIZEOF(long) AC_CHECK_SIZEOF(unsigned long) AC_CHECK_SIZEOF(long long) AC_CHECK_SIZEOF(unsigned long long) AC_CHECK_SIZEOF(float) AC_CHECK_SIZEOF(double) AC_CHECK_SIZEOF(long double) AC_CHECK_SIZEOF(void *) AC_HEADER_STDC AC_CHECK_HEADERS([stddef.h]) AC_CHECK_SIZEOF(wchar_t, 0, [ #ifdef HAVE_STDDEF_H #include #endif ]) AC_CHECK_SIZEOF(float_int, 0, [typedef struct { float a; int b; } float_int; ]) AC_CHECK_SIZEOF(double_int, 0, [typedef struct { double a; int b; } double_int; ]) AC_CHECK_SIZEOF(long_int, 0, [typedef struct { long a; int b; } long_int; ]) AC_CHECK_SIZEOF(short_int, 0, [typedef struct { short a; int b; } short_int; ]) AC_CHECK_SIZEOF(two_int, 0, [typedef struct { int a; int b; } two_int; ]) AC_CHECK_SIZEOF(long_double_int, 0, [typedef struct { long double a; int b;} long_double_int; ]) # sys/bitypes.h defines the int16_t etc. on some systems (e.g., OSF1). # Include it when testing for these types AC_CHECK_HEADER(sys/bitypes.h,[use_bitypes="#include " AC_DEFINE(HAVE_SYS_BITYPES_H,1,[Define if sys/bitypes.h exists])]) # A C99 compliant compiler should have inttypes.h for fixed-size int types AC_CHECK_HEADERS(inttypes.h stdint.h) # Check for types AC_TYPE_INT8_T AC_TYPE_INT16_T AC_TYPE_INT32_T AC_TYPE_INT64_T # Temporary issue in autoconf integer type checking (remove when # autoconf fixes this or provides a workaround for it) if test "$ac_cv_c_int8_t" != no ; then AC_DEFINE(HAVE_INT8_T,1,[Define if int8_t is supported by the C compiler]) fi if test "$ac_cv_c_int16_t" != no ; then AC_DEFINE(HAVE_INT16_T,1,[Define if int16_t is supported by the C compiler]) fi if test "$ac_cv_c_int32_t" != no ; then AC_DEFINE(HAVE_INT32_T,1,[Define if int32_t is supported by the C compiler]) fi if test "$ac_cv_c_int64_t" != no ; then AC_DEFINE(HAVE_INT64_T,1,[Define if int64_t is supported by the C compiler]) fi # The following make these definitions: # define _UINT_T 1 # if uint_t is available. E.g., define _UINT8_T as 1 if uint8_t is available # if not available, define uint_t as the related C type, e.g., # define uint8_t unsigned char # AC_TYPE_UINT8_T AC_TYPE_UINT16_T AC_TYPE_UINT32_T AC_TYPE_UINT64_T # Temporary issue in autoconf integer type checking (remove when # autoconf fixes this or provides a workaround for it) if test "$ac_cv_c_uint8_t" != no ; then AC_DEFINE(HAVE_UINT8_T,1,[Define if uint8_t is supported by the C compiler]) fi if test "$ac_cv_c_uint16_t" != no ; then AC_DEFINE(HAVE_UINT16_T,1,[Define if uint16_t is supported by the C compiler]) fi if test "$ac_cv_c_uint32_t" != no ; then AC_DEFINE(HAVE_UINT32_T,1,[Define if uint32_t is supported by the C compiler]) fi if test "$ac_cv_c_uint64_t" != no ; then AC_DEFINE(HAVE_UINT64_T,1,[Define if uint64_t is supported by the C compiler]) fi # Other C99 types. AC_CHECK_HEADERS([stdbool.h complex.h]) AC_CHECK_SIZEOF([_Bool],0,[ #ifdef HAVE_STDBOOL_H #include #endif ]) AC_CHECK_SIZEOF([float _Complex],0,[ #ifdef HAVE_COMPLEX_H #include #endif ]) AC_CHECK_SIZEOF([double _Complex],0,[ #ifdef HAVE_COMPLEX_H #include #endif ]) AC_CHECK_SIZEOF([long double _Complex],0,[ #ifdef HAVE_COMPLEX_H #include #endif ]) # we need really could just use the result of AC_CHECK_SIZEOF, but having a # HAVE_typename macro is useful for consistency AC_CHECK_TYPES([_Bool, float _Complex, double _Complex, long double _Complex]) # Generate a hex version of the size of each type for type in short int long long_long float double long_double wchar_t \ float_int double_int long_int short_int two_int long_double_int \ _Bool float__Complex double__Complex long_double__Complex ; do eval len=\$ac_cv_sizeof_$type if test -z "$len" ; then len=0 # Check for sizes from the CHECK_SIZEOF_DERIVED macro eval pclen=\$ac_cv_sizeof_$type if test -n "$pclen" ; then len=$pclen else # check for a non-optional type if test $type != long_long -a \ $type != long_double -a \ $type != long_double_int -a \ $type != _Bool -a \ $type != float__Complex -a \ $type != double__Complex -a \ $type != long_double__Complex ; then AC_MSG_ERROR([Configure was unable to determine the size of $type ; if cross compiling, use the environment variables CROSS_SIZEOF_typename, e.g., CROSS_SIZEOF_SHORT, or use the --with-cross=file configure option to specify a file containing Bourne (sh) shell assignments to CROSS_SIZEOF_typename for all datatype types. The program maint/getcross.c can be compiled and run on the target system; this program outputs an appropriate file for the --with-cross option]) fi fi fi # # Take len and turn it into two hex digits (there are 8 bits available # in the built-in datatype handle for the length; see # src/mpid/common/datatype/mpid_datatype.h) if test "$len" -gt 255 ; then AC_MSG_ERROR([Type sizes greater than 255 bytes are not supported (type $type is $len bytes)]) fi tmplen=$len hexlen="" while test $tmplen -gt 0 ; do lowdigit=`expr $tmplen - 16 \* \( $tmplen / 16 \)` case $lowdigit in 10) char=a ;; 11) char=b ;; 12) char=c ;; 13) char=d ;; 14) char=e ;; 15) char=f ;; *) char=$lowdigit ;; esac hexlen="$char$hexlen" tmplen=`expr $tmplen / 16` done if test $len -lt 16 ; then hexlen="0$hexlen" fi if test $len = 0 ; then # This sometimes happens for wchar_t hexlen="00"; fi eval len_$type=$hexlen done # By definition, sizeof char is 1 MPI_CHAR="0x4c000101" MPI_UNSIGNED_CHAR="0x4c000102" MPI_SHORT="0x4c00${len_short}03" MPI_UNSIGNED_SHORT="0x4c00${len_short}04" MPI_INT="0x4c00${len_int}05" MPI_UNSIGNED_INT="0x4c00${len_int}06" MPI_LONG="0x4c00${len_long}07" MPI_UNSIGNED_LONG="0x4c00${len_long}08" if test "$len_long_long" != 0 -a "$MPID_NO_LONG_LONG" != yes ; then MPI_LONG_LONG="0x4c00${len_long_long}09" else MPI_LONG_LONG=MPI_DATATYPE_NULL; fi MPI_FLOAT="0x4c00${len_float}0a" MPI_DOUBLE="0x4c00${len_double}0b" if test "$len_long_double" != 0 -a "$MPID_NO_LONG_DOUBLE" != yes ; then MPI_LONG_DOUBLE="0x4c00${len_long_double}0c" else MPI_LONG_DOUBLE=MPI_DATATYPE_NULL fi # If you change MPI_BYTE, you must change it in src/binding/f77/buildiface MPI_BYTE="0x4c00010d" MPI_WCHAR="0x4c00${len_wchar_t}0e" MPI_PACKED="0x4c00010f" MPI_LB="0x4c000010" MPI_UB="0x4c000011" # # These should define the mixed types *only* for contiguous data. # For example, MPI_SHORT_INT may have a gap; it will need to be defined # as a derived type instead. For IA32, this only affects short_int. MPI_2INT="0x4c00${len_two_int}16" # # For now we aren't being too clever about figuring out which of these # are in fact contiguous, so these are all allocated as "real" types. # # These values correspond to direct types 0..5. # dnl MPI_FLOAT_INT="0x4c00${len_float_int}12" dnl MPI_DOUBLE_INT="0x4c00${len_double_int}13" dnl MPI_LONG_INT="0x4c00${len_long_int}14" dnl MPI_SHORT_INT="0x4c00${len_short_int}15" dnl MPI_LONG_DOUBLE_INT="0x4c00${len_long_double_int}17" MPI_FLOAT_INT="0x8c000000" MPI_DOUBLE_INT="0x8c000001" MPI_LONG_INT="0x8c000002" MPI_SHORT_INT="0x8c000003" if test "$MPID_NO_LONG_DOUBLE" != yes ; then MPI_LONG_DOUBLE_INT="0x8c000004" else MPI_LONG_DOUBLE_INT=MPI_DATATYPE_NULL fi # 2 additional predefined types named in MPI-2 MPI_SIGNED_CHAR="0x4c000118" if test "$len_long_long" != 0 -a "$MPID_NO_LONG_LONG" != yes ; then MPI_UNSIGNED_LONG_LONG="0x4c00${len_long_long}19" else MPI_UNSIGNED_LONG_LONG=MPI_DATATYPE_NULL fi AC_SUBST(MPI_CHAR) AC_SUBST(MPI_UNSIGNED_CHAR) AC_SUBST(MPI_SHORT) AC_SUBST(MPI_UNSIGNED_SHORT) AC_SUBST(MPI_INT) AC_SUBST(MPI_UNSIGNED_INT) AC_SUBST(MPI_LONG) AC_SUBST(MPI_UNSIGNED_LONG) AC_SUBST(MPI_LONG_LONG) AC_SUBST(MPI_FLOAT) AC_SUBST(MPI_DOUBLE) AC_SUBST(MPI_LONG_DOUBLE) AC_SUBST(MPI_BYTE) AC_SUBST(MPI_WCHAR) AC_SUBST(MPI_PACKED) AC_SUBST(MPI_LB) AC_SUBST(MPI_UB) AC_SUBST(MPI_FLOAT_INT) AC_SUBST(MPI_DOUBLE_INT) AC_SUBST(MPI_LONG_INT) AC_SUBST(MPI_SHORT_INT) AC_SUBST(MPI_2INT) AC_SUBST(MPI_LONG_DOUBLE_INT) AC_SUBST(MPI_SIGNED_CHAR) AC_SUBST(MPI_UNSIGNED_LONG_LONG) # # FIXME: Leftover from separate fortran system ## Export the basic C types so that the Fortran system can use them #export MPI_CHAR #export MPI_SHORT #export MPI_INT #export MPI_LONG #export MPI_LONG_LONG #export MPI_FLOAT #export MPI_DOUBLE #export MPI_LONG_DOUBLE # # Size-specific types. Initialize as NULL MPI_REAL4=MPI_DATATYPE_NULL MPI_REAL8=MPI_DATATYPE_NULL MPI_REAL16=MPI_DATATYPE_NULL MPI_COMPLEX8=MPI_DATATYPE_NULL MPI_COMPLEX16=MPI_DATATYPE_NULL MPI_COMPLEX32=MPI_DATATYPE_NULL MPI_INTEGER1=MPI_DATATYPE_NULL MPI_INTEGER2=MPI_DATATYPE_NULL MPI_INTEGER4=MPI_DATATYPE_NULL MPI_INTEGER8=MPI_DATATYPE_NULL MPI_INTEGER16=MPI_DATATYPE_NULL AC_SUBST(MPI_REAL4) AC_SUBST(MPI_REAL8) AC_SUBST(MPI_REAL16) AC_SUBST(MPI_COMPLEX8) AC_SUBST(MPI_COMPLEX16) AC_SUBST(MPI_COMPLEX32) AC_SUBST(MPI_INTEGER1) AC_SUBST(MPI_INTEGER2) AC_SUBST(MPI_INTEGER4) AC_SUBST(MPI_INTEGER8) AC_SUBST(MPI_INTEGER16) export MPI_REAL4 export MPI_REAL8 export MPI_REAL16 export MPI_COMPLEX8 export MPI_COMPLEX16 export MPI_COMPLEX32 export MPI_INTEGER1 export MPI_INTEGER2 export MPI_INTEGER4 export MPI_INTEGER8 export MPI_INTEGER16 # # Try to find corresponding types for the size-specific types. # # Assume that the float/double/long double are simply spaced # Datatypes used up through 26 in Fortran # 27,28,29,2a,2b,2c if test "$ac_cv_sizeof_float" = "4" ; then MPI_REAL4="0x4c000427" MPI_COMPLEX8="0x4c000828" MPIR_REAL4_CTYPE=float fi if test "$ac_cv_sizeof_double" = "8" ; then MPI_REAL8="0x4c000829" MPI_COMPLEX16="0x4c00102a" MPIR_REAL8_CTYPE=double fi if test "$ac_cv_sizeof_long_double" = "16" -a "$MPID_NO_LONG_DOUBLE" != yes ; then MPI_REAL16="0x4c00102b" MPI_COMPLEX32="0x4c00202c" MPIR_REAL16_CTYPE="long double" fi if test -n "$MPIR_REAL4_CTYPE" ; then AC_DEFINE_UNQUOTED(MPIR_REAL4_CTYPE,$MPIR_REAL4_CTYPE,[C type to use for MPI_REAL4]) fi if test -n "$MPIR_REAL8_CTYPE" ; then AC_DEFINE_UNQUOTED(MPIR_REAL8_CTYPE,$MPIR_REAL8_CTYPE,[C type to use for MPI_REAL8]) fi if test -n "$MPIR_REAL16_CTYPE" ; then AC_DEFINE_UNQUOTED(MPIR_REAL16_CTYPE,$MPIR_REAL16_CTYPE,[C type to use for MPI_REAL16]) fi # For complex 8/16/32, we assume that these are 2 consequetive real4/8/16 # # Search for the integer types for type in char short int long long_long ; do # ctype is a valid C type which we can use to declare a C version of # this item ctype=`echo $type | sed 's/_/ /'` eval len=\$ac_cv_sizeof_$type if test -n "$len" ; then case $len in 1) if test "$MPI_INTEGER1" = "MPI_DATATYPE_NULL" ; then MPI_INTEGER1="0x4c00012d" MPIR_INTEGER1_CTYPE="$ctype" fi ;; 2) if test "$MPI_INTEGER2" = "MPI_DATATYPE_NULL" ; then MPI_INTEGER2="0x4c00022f" MPIR_INTEGER2_CTYPE="$ctype" fi ;; 4) if test "$MPI_INTEGER4" = "MPI_DATATYPE_NULL" ; then MPI_INTEGER4="0x4c000430" MPIR_INTEGER4_CTYPE="$ctype" fi ;; 8) if test "$MPI_INTEGER8" = "MPI_DATATYPE_NULL" ; then MPI_INTEGER8="0x4c000831" MPIR_INTEGER8_CTYPE="$ctype" fi ;; 16) if test "$MPI_INTEGER16" = "MPI_DATATYPE_NULL" ; then MPI_INTEGER16="0x4c001032" MPIR_INTEGER16_CTYPE="$ctype" fi ;; *) ;; esac fi done # # Add the definitions of these types if test -n "$MPIR_INTEGER1_CTYPE" ; then AC_DEFINE_UNQUOTED(MPIR_INTEGER1_CTYPE,$MPIR_INTEGER1_CTYPE,[C type to use for MPI_INTEGER1]) fi if test -n "$MPIR_INTEGER2_CTYPE" ; then AC_DEFINE_UNQUOTED(MPIR_INTEGER2_CTYPE,$MPIR_INTEGER2_CTYPE,[C type to use for MPI_INTEGER2]) fi if test -n "$MPIR_INTEGER4_CTYPE" ; then AC_DEFINE_UNQUOTED(MPIR_INTEGER4_CTYPE,$MPIR_INTEGER4_CTYPE,[C type to use for MPI_INTEGER4]) fi if test -n "$MPIR_INTEGER8_CTYPE" ; then AC_DEFINE_UNQUOTED(MPIR_INTEGER8_CTYPE,$MPIR_INTEGER8_CTYPE,[C type to use for MPI_INTEGER8]) fi if test -n "$MPIR_INTEGER16_CTYPE" ; then AC_DEFINE_UNQUOTED(MPIR_INTEGER16_CTYPE,$MPIR_INTEGER16_CTYPE,[C type to use for MPI_INTEGER16]) fi # ---------------------------------------------------------------------------- # C99 types # The predefined types must be distinct types (as opposed to aliases to MPI_INT # or MPI_WHATEVER) in order to correctly support MPI_Type_{get,set}_name. # # FIXME the "basic id" portion should be automatically assigned. It's too easy # to have a conflict when this is done by hand. # # Because we make up a matching type for the fixed-width types if one doesn't # exist, we don't ever set these to MPI_DATATYPE_NULL. If we come across a # platform where 64-bit sizes aren't supported just add a test like the other # types. MPI_INT8_T=0x4c000137 MPI_INT16_T=0x4c000238 MPI_INT32_T=0x4c000439 MPI_INT64_T=0x4c00083a MPI_UINT8_T=0x4c00013b MPI_UINT16_T=0x4c00023c MPI_UINT32_T=0x4c00043d MPI_UINT64_T=0x4c00083e # The compiler may or may not support these types, depending on its level of C99 # compliance. We check for each one individually before assigning a handle # number. MPI_C_BOOL=MPI_DATATYPE_NULL MPI_C_FLOAT_COMPLEX=MPI_DATATYPE_NULL MPI_C_DOUBLE_COMPLEX=MPI_DATATYPE_NULL MPI_C_LONG_DOUBLE_COMPLEX=MPI_DATATYPE_NULL if test ${len__Bool} != 0 ; then MPI_C_BOOL=0x4c00${len__Bool}3f fi if test ${len_float__Complex} != 0 ; then MPI_C_FLOAT_COMPLEX=0x4c00${len_float__Complex}40 fi if test ${len_double__Complex} != 0 ; then MPI_C_DOUBLE_COMPLEX=0x4c00${len_double__Complex}41 fi if test ${len_long_double__Complex} != 0 ; then MPI_C_LONG_DOUBLE_COMPLEX=0x4c00${len_long_double__Complex}42 fi AC_SUBST(MPI_INT8_T) AC_SUBST(MPI_INT16_T) AC_SUBST(MPI_INT32_T) AC_SUBST(MPI_INT64_T) AC_SUBST(MPI_UINT8_T) AC_SUBST(MPI_UINT16_T) AC_SUBST(MPI_UINT32_T) AC_SUBST(MPI_UINT64_T) AC_SUBST(MPI_C_BOOL) AC_SUBST(MPI_C_FLOAT_COMPLEX) AC_SUBST(MPI_C_DOUBLE_COMPLEX) AC_SUBST(MPI_C_LONG_DOUBLE_COMPLEX) export MPI_INT8_T export MPI_INT16_T export MPI_INT32_T export MPI_INT64_T export MPI_UINT8_T export MPI_UINT16_T export MPI_UINT32_T export MPI_UINT64_T export MPI_C_BOOL export MPI_C_FLOAT_COMPLEX export MPI_C_DOUBLE_COMPLEX export MPI_C_LONG_DOUBLE_COMPLEX # ---------------------------------------------------------------------------- # We can now create the Fortran versions of the datatype values, along with # some of the other datatype-dependent sizes # There are two parts to handling the datatypes: # Convert the C datatype values to their Fortran equivalent. This # involves converting the hex values for the C version into decimal # since standard Fortran does not have hex constants # # Determine the existence of the Fortran 'sized' types and set those # values. # # In addition, we need to look at a few additional constants that depend # on how the compiler sizes some datatypes. These are: # STATUS_SIZE, INTEGER_KIND, ADDRESS_KIND, and OFFSET_KIND # # ---------------------------------------------------------------------------- if test "$enable_f77" = yes ; then # Up to size checking code in master configure.ac (where it tries to # find the matching C sizes) as part of defining mpi_integer8 etc. # The results are available in pac_cv_sizeof_f77_ # Size is 0 if unknown or unavailable (or cross-compiling) # Due to limitations in autoconf, we cannot put these into a loop. # We also check integer to find the type of MPI_Fint # # Cross-compilation results can be included with the --with-cross=file # option. CROSS_F77_SIZEOF_INTEGER=${CROSS_F77_SIZEOF_INTEGER:-0} CROSS_F77_SIZEOF_REAL=${CROSS_F77_SIZEOF_REAL:-0} CROSS_F77_SIZEOF_DOUBLE_PRECISION=${CROSS_F77_SIZEOF_DOUBLE_PRECISION:-0} PAC_PROG_F77_CHECK_SIZEOF_EXT(integer,$CROSS_F77_SIZEOF_INTEGER) PAC_PROG_F77_CHECK_SIZEOF_EXT(real,$CROSS_F77_SIZEOF_REAL) PAC_PROG_F77_CHECK_SIZEOF_EXT(double precision,$CROSS_F77_SIZEOF_DOUBLE_PRECISION) AC_LANG_FORTRAN77 # If we have sizes for real and double, we do not need to call # mpir_get_fsize at run time. # For the size-defined types (e.g., integer*2), we assume that if the # compiler allows it, it has the stated size. AC_CACHE_CHECK([whether integer*1 is supported],pac_cv_fort_integer1,[ AC_COMPILE_IFELSE([AC_LANG_PROGRAM(,[ integer*1 i])], pac_cv_fort_integer1=yes, pac_cv_fort_integer1=no)]) AC_CACHE_CHECK([whether integer*2 is supported],pac_cv_fort_integer2,[ AC_COMPILE_IFELSE([AC_LANG_PROGRAM(,[ integer*2 i])], pac_cv_fort_integer2=yes, pac_cv_fort_integer2=no)]) AC_CACHE_CHECK([whether integer*4 is supported],pac_cv_fort_integer4,[ AC_COMPILE_IFELSE([AC_LANG_PROGRAM(,[ integer*4 i])], pac_cv_fort_integer4=yes, pac_cv_fort_integer4=no)]) AC_CACHE_CHECK([whether integer*8 is supported],pac_cv_fort_integer8,[ AC_COMPILE_IFELSE([AC_LANG_PROGRAM(,[ integer*8 i])], pac_cv_fort_integer8=yes, pac_cv_fort_integer8=no)]) AC_CACHE_CHECK([whether integer*16 is supported],pac_cv_fort_integer16,[ AC_COMPILE_IFELSE([AC_LANG_PROGRAM(,[ integer*16 i])], pac_cv_fort_integer16=yes, pac_cv_fort_integer16=no)]) AC_CACHE_CHECK([whether real*4 is supported],pac_cv_fort_real4,[ AC_COMPILE_IFELSE([AC_LANG_PROGRAM(,[ real*4 a])], pac_cv_fort_real4=yes, pac_cv_fort_real4=no)]) AC_CACHE_CHECK([whether real*8 is supported],pac_cv_fort_real8,[ AC_COMPILE_IFELSE([AC_LANG_PROGRAM(,[ real*8 a])], pac_cv_fort_real8=yes, pac_cv_fort_real8=no)]) AC_CACHE_CHECK([whether real*16 is supported],pac_cv_fort_real16,[ AC_COMPILE_IFELSE([AC_LANG_PROGRAM(,[ real*16 a])], pac_cv_fort_real16=yes, pac_cv_fort_real16=no)]) # Create the default datatype names for the standard MPI Fortran types MPI_CHARACTER=0x4c00011a AC_SUBST(MPI_CHARACTER) if test -z "$pac_cv_f77_sizeof_integer" ; then AC_MSG_ERROR([Unable to configure with Fortran support because configure could not determine the size of a Fortran INTEGER. Consider setting CROSS_F77_SIZEOF_INTEGER to the length in bytes of a Fortran INTEGER]) fi len_integer=$pac_cv_f77_sizeof_integer # Convert to two digit hex len=$len_integer # # Take len and turn it into two hex digits (there are 8 bits available # in the built-in datatype handle for the length; see # src/mpid/common/datatype/mpid_datatype.h). This code is taken # from the code in mpich/configure.ac if test "$len" -gt 255 ; then AC_MSG_ERROR([Type sizes greater than 255 bytes are not supported (type INTEGER is $len bytes)]) fi tmplen=$len hexlen="" while test $tmplen -gt 0 ; do lowdigit=`expr $tmplen - 16 \* \( $tmplen / 16 \)` case $lowdigit in 10) char=a ;; 11) char=b ;; 12) char=c ;; 13) char=d ;; 14) char=e ;; 15) char=f ;; *) char=$lowdigit ;; esac hexlen="$char$hexlen" tmplen=`expr $tmplen / 16` done if test $len -lt 16 ; then hexlen="0$hexlen" fi len_integer=$hexlen if test "$len_integer" = 0 ; then # We have a problem AC_MSG_WARN([Unable to determine size of an INTEGER type; using 4]) # We make the length 4 len_integer="04" fi MPI_INTEGER=0x4c00${len_integer}1b MPI_REAL=0x4c00${len_integer}1c MPI_LOGICAL=0x4c00${len_integer}1d AC_SUBST(MPI_INTEGER) AC_SUBST(MPI_REAL) AC_SUBST(MPI_LOGICAL) if test -z "$pac_cv_f77_sizeof_double_precision" ; then AC_MSG_ERROR([Unable to configure with Fortran support because configure could not determine the size of a Fortran DOUBLE PRECISION. Consider setting CROSS_F77_SIZEOF_DOUBLE_PRECISION to the length in bytes of a Fortran DOUBLE PRECISION]) fi len_double=$pac_cv_f77_sizeof_double_precision # Convert to two digit hex len=$len_double # # Take len and turn it into two hex digits (there are 8 bits available # in the built-in datatype handle for the length; see # src/mpid/common/datatype/mpid_datatype.h). This code is taken # from the code in mpich/configure.ac if test "$len" -gt 255 ; then AC_MSG_ERROR([Type sizes greater than 255 bytes are not supported (type DOUBLE is $len bytes)]) fi tmplen=$len hexlen="" while test $tmplen -gt 0 ; do lowdigit=`expr $tmplen - 16 \* \( $tmplen / 16 \)` case $lowdigit in 10) char=a ;; 11) char=b ;; 12) char=c ;; 13) char=d ;; 14) char=e ;; 15) char=f ;; *) char=$lowdigit ;; esac hexlen="$char$hexlen" tmplen=`expr $tmplen / 16` done if test $len -lt 16 ; then hexlen="0$hexlen" fi len_double=$hexlen if test "$len_double" = 0 ; then # We have a problem AC_MSG_WARN([Unable to determine size of a DOUBLE PRECISION type; using 8]) # We make the length 8 len_double="08" fi # Provide the corresponding C types for MPI_REAL and MPI_DOUBLE AC_MSG_CHECKING([for C type matching Fortran real]) noval=yes for c_type in float double "long_double" ; do eval ctypelen=\$"ac_cv_sizeof_$c_type" if test "$pac_cv_f77_sizeof_real" = "$ctypelen" -a \ "$ctypelen" -gt 0 ; then c_type=`echo $c_type | sed -e 's/_/ /g'` AC_MSG_RESULT($c_type) MPIR_FC_REAL_CTYPE=$c_type noval="no" break fi done if test "$noval" = "yes" ; then # Set a default MPIR_FC_REAL_CTYPE="float" AC_MSG_RESULT([unavailable]) fi noval=yes AC_MSG_CHECKING([for C type matching Fortran double]) for c_type in double "long_double" float ; do eval ctypelen=\$"ac_cv_sizeof_$c_type" if test "$pac_cv_f77_sizeof_double_precision" = "$ctypelen" -a \ "$ctypelen" -gt 0 ; then c_type=`echo $c_type | sed -e 's/_/ /g'` AC_MSG_RESULT($c_type) MPIR_FC_DOUBLE_CTYPE=$c_type noval="no" break fi done if test "$noval" = "yes" ; then # Set a default MPIR_FC_DOUBLE_CTYPE="double" AC_MSG_RESULT([unavailable]) fi # These are needed to correctly implement the MPI reduction operations AC_DEFINE_UNQUOTED([MPIR_FC_REAL_CTYPE],[$MPIR_FC_REAL_CTYPE], [The C type for FORTRAN REAL]) AC_DEFINE_UNQUOTED([MPIR_FC_DOUBLE_CTYPE],[$MPIR_FC_DOUBLE_CTYPE], [The C type for FORTRAN DOUBLE PRECISION]) # Use the proper length values for these items in case we are building # with Fortran integers that are not the same size as C ints and # reals and double precision that are the same size (not valid Fortran, # but used by some applications) len_2integer=`expr 2 \* $len_integer` len_2real=`expr 2 \* $len_integer` len_doublecplx=`expr $pac_cv_f77_sizeof_double_precision \* 2` if test "$len_doublecplx" = 0 ; then # We have a problem AC_MSG_WARN([Unable to determine size of a DOUBLE PRECISION type; using 8]) # We make the length 8*2 (in hex) len_doublecplx="16" fi for lenname in len_2integer len_2real len_doublecplx ; do eval len=\$$lenname if test "$len" -gt 255 ; then AC_MSG_ERROR([Type sizes greater than 255 bytes are not supported (type $lenname is $len bytes)]) fi tmplen=$len hexlen="" while test $tmplen -gt 0 ; do lowdigit=`expr $tmplen - 16 \* \( $tmplen / 16 \)` case $lowdigit in 10) char=a ;; 11) char=b ;; 12) char=c ;; 13) char=d ;; 14) char=e ;; 15) char=f ;; *) char=$lowdigit ;; esac hexlen="$char$hexlen" tmplen=`expr $tmplen / 16` done if test $len -lt 16 ; then hexlen="0$hexlen" fi eval ${lenname}=$hexlen if test "$hexlen" = 0 ; then # We have a problem AC_MSG_WARN([Unable to determine size of a $lenname type; using 8]) # We make the length 8 eval ${lenname}=$hexlen fi done MPI_DOUBLE_PRECISION=0x4c00${len_double}1f MPI_2INTEGER=0x4c00${len_2integer}20 MPI_2REAL=0x4c00${len_2real}21 MPI_COMPLEX=0x4c00${len_2real}1e AC_SUBST(MPI_COMPLEX) AC_SUBST(MPI_DOUBLE_PRECISION) AC_SUBST(MPI_2INTEGER) AC_SUBST(MPI_2REAL) dnl len=$len_doublecplx dnl # dnl # Take len and turn it into two hex digits (there are 8 bits available dnl # in the built-in datatype handle for the length; see dnl # src/mpid/common/datatype/mpid_datatype.h). This code is taken dnl # from the code in mpich/configure.ac dnl if test "$len" -gt 255 ; then dnl AC_MSG_ERROR([Type sizes greater than 255 bytes are not supported (type DOUBLE COMPLEX is $len bytes)]) dnl fi dnl tmplen=$len dnl hexlen="" dnl while test $tmplen -gt 0 ; do dnl lowdigit=`expr $tmplen - 16 \* \( $tmplen / 16 \)` dnl case $lowdigit in dnl 10) char=a ;; dnl 11) char=b ;; dnl 12) char=c ;; dnl 13) char=d ;; dnl 14) char=e ;; dnl 15) char=f ;; dnl *) char=$lowdigit ;; dnl esac dnl hexlen="$char$hexlen" dnl tmplen=`expr $tmplen / 16` dnl done dnl if test $len -lt 16 ; then dnl hexlen="0$hexlen" dnl fi dnl len_doublecplx=$hexlen MPI_DOUBLE_COMPLEX=0x4c00${len_doublecplx}22 MPI_2DOUBLE_PRECISION=0x4c00${len_doublecplx}23 MPI_2COMPLEX=0x4c00${len_doublecplx}24 AC_SUBST(MPI_DOUBLE_COMPLEX) AC_SUBST(MPI_2DOUBLE_PRECISION) AC_SUBST(MPI_2COMPLEX) # # Temporary for the vast majority of systems that use 4 byte reals and # 8 byte doubles # Lengths at this point are in hex, hence "10" = 10 base 16 = 16 base 10. if test "$len_double" = "08" ; then F77_COMPLEX8=$MPI_COMPLEX fi if test "$len_doublecplx" = "10" ; then F77_COMPLEX16=$MPI_DOUBLE_COMPLEX fi if test "$len_long_double" = "10" -a "$MPID_NO_LONG_DOUBLE" != "yes" ; then F77_COMPLEX32="0x4c002025" else F77_COMPLEX32="MPI_DATATYPE_NULL" fi len_2dc=`expr $pac_cv_f77_sizeof_double_precision \* 4` firstdigit=0 seconddigit=0 while test $len_2dc -ge 16 ; do firstdigit=`expr $firstdigit + 1` len_2dc=`expr $len_2dc - 16` done case $len_2dc in 10) seconddigit=a ;; 11) seconddigit=b ;; 12) seconddigit=c ;; 13) seconddigit=d ;; 14) seconddigit=e ;; 15) seconddigit=f ;; *) seconddigit=$len_2dc ;; esac len_2dc="$firstdigit$seconddigit" #echo "2double complex = $len_2dc" MPI_2DOUBLE_COMPLEX=0x4c00${len_2dc}25 AC_SUBST(MPI_2DOUBLE_COMPLEX) MPI_F77_PACKED=$MPI_PACKED MPI_F77_UB=$MPI_UB MPI_F77_LB=$MPI_LB MPI_F77_BYTE=$MPI_BYTE AC_SUBST(MPI_F77_PACKED) AC_SUBST(MPI_F77_UB) AC_SUBST(MPI_F77_LB) AC_SUBST(MPI_F77_BYTE) # # We must convert all hex values to decimal (!) # It would be nice to use expr to extract the next character rather than # the heavier-weight sed, but expr under Tru64 Unix discards leading zeros, # even when used only with the match (:) command. Rather than have # configure figure out if expr works, we just use sed. Sigh. for var in CHARACTER INTEGER REAL LOGICAL DOUBLE_PRECISION COMPLEX \ DOUBLE_COMPLEX 2INTEGER 2REAL 2COMPLEX 2DOUBLE_PRECISION \ 2DOUBLE_COMPLEX F77_PACKED F77_UB F77_LB F77_BYTE; do fullvar="MPI_$var" eval fullvarvalue=\$$fullvar #echo "$fullvar = $fullvarvalue" value=0 fullvarvalue=`echo $fullvarvalue | sed -e 's/..\(.*\)/\1/'` for pos in 3 4 5 6 7 8 9 10 ; do # This works, even for Tru64, because only a single character # is extracted char=`expr $fullvarvalue : '\(.\)'` # FIXME: Tru64 Unix eliminates leading zeros (!) # How do we fix something that broken? fullvarvalue=`echo $fullvarvalue | sed -e 's/.\(.*\)/\1/'` case $char in a) char=10 ;; b) char=11 ;; c) char=12 ;; d) char=13 ;; e) char=14 ;; f) char=15 ;; esac value=`expr $value \* 16 + $char` done #echo "$fullvar = $value" if test "X$value" = "X"; then eval origvarvalue=\$$fullvar AC_MSG_ERROR([Internal Error: Failed to convert $fullvar value to hex! Original value was $origvarvalue]) fi eval $fullvar=$value done AC_LANG_C # Now, handle the sized types # # Preload the C mpi types # THESE MUST MATCH THE DEFINITIONS IN MPI.H and MPIF.H # We use these to match the optional Fortran types char_mpi=${MPI_CHAR:-0} short_mpi=${MPI_SHORT:-0} int_mpi=${MPI_INT:-0} long_mpi=${MPI_LONG:-0} long_long_mpi=${MPI_LONG_LONG:-0} float_mpi=${MPI_FLOAT:-0} double_mpi=${MPI_DOUBLE:-0} long_double_mpi=${MPI_LONG_DOUBLE:-0} # # The following code was correct for MPI-1, which allowed these datatypes # to be an alias for another MPI type. MPI-2 requires these to # be distinct types, so these are enumerated if test "$use_alias_types" = yes ; then for len in 1 2 4 8 16 ; do eval F77_INTEGER$len=0 #eval testval=\$"pac_cv_f77_sizeof_integer_$len" eval testval=\$"pac_cv_fort_integer$len" if test "$testval" = no ; then continue ; fi testval=$len noval="yes" AC_MSG_CHECKING([for C type matching Fortran integer*$len]) for c_type in char short int long "long_long" ; do eval ctypelen=\$"ac_cv_sizeof_$c_type" if test "$testval" = "$ctypelen" -a "$ctypelen" -gt 0 ; then AC_MSG_RESULT($c_type) eval F77_INTEGER$len=\$"${c_type}_mpi" noval="no" break fi done if test "$noval" = "yes" ; then AC_MSG_RESULT([unavailable]) fi done # Complex is set separately above for len in 4 8 16 ; do len2=`expr $len + $len` eval F77_REAL$len=0 #eval F77_COMPLEX$len2=0 #eval testval=\$"pac_cv_f77_sizeof_real_$len" eval testval=\$"pac_cv_fort_real$len" if test "$testval" = no ; then continue ; fi testval=$len noval="yes" AC_MSG_CHECKING([for C type matching Fortran real*$len]) for c_type in float double "long_double" ; do eval ctypelen=\$"ac_cv_sizeof_$c_type" if test "$testval" = "$ctypelen" -a "$ctypelen" -gt 0 ; then AC_MSG_RESULT($c_type) eval F77_REAL$len=\$"${c_type}_mpi" #eval F77_COMPLEX$len2=\$"${c_type}_cplx_mpi" noval="no" break fi done if test "$noval" = "yes" ; then AC_MSG_RESULT([unavailable]) fi done else # Simply determine which types exist. These may have been set by the # toplevel configure for var in INTEGER1 INTEGER2 INTEGER4 INTEGER8 INTEGER16 \ REAL4 REAL8 REAL16 COMPLEX8 COMPLEX16 COMPLEX32 ; do eval varname=MPI_$var eval varvalue=\$$varname #echo "$varname = $varvalue" if test "$varvalue" = MPI_DATATYPE_NULL ; then eval F77_$var=0 else eval F77_$var=\$$varname fi done fi # We must convert all hex values to decimal (!) for var in INTEGER1 INTEGER2 INTEGER4 INTEGER8 INTEGER16 \ REAL4 REAL8 REAL16 COMPLEX8 COMPLEX16 COMPLEX32 ; do fullvar="F77_$var" eval fullvarvalue=\$$fullvar if test "$fullvarvalue" = 0 -o -z "$fullvarvalue" ; then eval $fullvar=MPI_DATATYPE_NULL continue fi #echo "$fullvar = $fullvarvalue" value=0 # See the comments above on why expr with : cannot be used here fullvarvalue=`echo $fullvarvalue | sed -e 's/..\(.*\)/\1/'` for pos in 3 4 5 6 7 8 9 10 ; do #char=`expr substr $fullvarvalue $pos 1` char=`expr $fullvarvalue : '\(.\)'` # We don't test for success of expr here because some expr's are # buggy and set the status to one on expressions like # expr 00ccc : '\(.\)' # while both # expr 00ccc : '\(..\)' # and # expr 100cc : '\(.\)' # return a zero status. So the status is set even on success, # if the result is a single character that is a zero (!) #rc=$? #if test "$rc" != 0 ; then dnl # AC_MSG_WARN([Failure (status $rc) in extracting first char from $fullvarvalue]) # break #fi fullvarvalue=`echo $fullvarvalue | sed -e 's/.\(.*\)/\1/'` case $char in a) char=10 ;; b) char=11 ;; c) char=12 ;; d) char=13 ;; e) char=14 ;; f) char=15 ;; esac value=`expr $value \* 16 + $char` if test $? != 0 ; then AC_MSG_WARN([Failure to evaluate $value \* 16 + $char]) fi done #echo "$fullvar = $value" eval $fullvar=$value done AC_SUBST(F77_INTEGER1) AC_SUBST(F77_INTEGER2) AC_SUBST(F77_INTEGER4) AC_SUBST(F77_INTEGER8) AC_SUBST(F77_INTEGER16) AC_SUBST(F77_REAL4) AC_SUBST(F77_REAL8) AC_SUBST(F77_REAL16) AC_SUBST(F77_COMPLEX8) AC_SUBST(F77_COMPLEX16) AC_SUBST(F77_COMPLEX32) noval="yes" AC_MSG_CHECKING([for C type matching Fortran integer]) for c_type in char short int long "long_long" ; do eval ctypelen=\$"ac_cv_sizeof_$c_type" if test "$pac_cv_f77_sizeof_integer" = "$ctypelen" -a \ "$ctypelen" -gt 0 ; then c_type=`echo $c_type | sed -e 's/_/ /g'` AC_MSG_RESULT($c_type) MPI_FINT=$c_type noval="no" break fi done if test "$noval" = "yes" ; then # Set a default MPI_FINT="int" AC_MSG_RESULT([unavailable]) fi # We also need to check the size of MPI_Aint vs MPI_Fint, and # define AINT_LARGER_THAN_FINT if aint is larger (this # affects code in MPI_Address) if test "$ac_cv_sizeof_void_p" != "0" -a \ "$ac_cv_sizeof_void_p" -gt "$pac_cv_f77_sizeof_integer" ; then AC_DEFINE(HAVE_AINT_LARGER_THAN_FINT,1,[Define if addresses are larger than Fortran integers]) fi if test "$ac_cv_sizeof_void_p" != 0 -a \ "$ac_cv_sizeof_void_p" != "$pac_cv_f77_sizeof_integer" ; then AC_DEFINE(HAVE_AINT_DIFFERENT_THAN_FINT,1,[Define if addresses are a different size than Fortran integers]) fi # Include a defined value for Fint is int if test "$MPI_FINT" = "int" ; then AC_DEFINE(HAVE_FINT_IS_INT,1,[Define if Fortran integer are the same size as C ints]) elif test "$SIZEOF_F77_INTEGER" != "$ac_cv_sizeof_int" ; then # Make this fatal because we do not want to build a broken fortran # interface (was error) # Check to see if the f77 binding has enabled the code to support # the case of int != fint. if grep HAVE_FINT_IS_INT $master_top_srcdir/src/binding/f77/testf.c 2>&1 1>/dev/null ; then AC_MSG_WARN([Fortran integers and C ints are not the same size. Support for this case is experimental; use at your own risk]) else AC_MSG_ERROR([Fortran integers and C ints are not the same size. The current Fortran binding does not support this case. Either force the Fortran compiler to use integers of $ac_cv_sizeof_int bytes, or use --disable-f77 on the configure line for MPICH.]) fi fi # We must convert all hex values to decimal (!). # This is for the C types so they are also available in Fortran for var in CHAR SIGNED_CHAR UNSIGNED_CHAR WCHAR SHORT \ UNSIGNED_SHORT INT UNSIGNED_INT LONG UNSIGNED_LONG \ FLOAT DOUBLE LONG_DOUBLE LONG_LONG_INT \ UNSIGNED_LONG_LONG LONG_LONG FLOAT_INT DOUBLE_INT \ LONG_INT SHORT_INT "2INT" LONG_DOUBLE_INT \ INT8_T INT16_T INT32_T INT64_T \ UINT8_T UINT16_T UINT32_T UINT64_T \ C_BOOL C_FLOAT_COMPLEX C_DOUBLE_COMPLEX \ C_LONG_DOUBLE_COMPLEX AINT OFFSET ; do fullvar="MPI_$var" fullf77var="MPI_F77_$var" eval fullvarvalue=\$$fullvar #echo "$fullvar = $fullvarvalue" if test "x$fullvarvalue" = "x" -o \ "x$fullvarvalue" = "xMPI_DATATYPE_NULL" ; then eval $fullf77var="MPI_DATATYPE_NULL" continue fi value=0 fullvarvalue=`echo $fullvarvalue | sed -e 's/..\(.*\)/\1/'` offset=0 for pos in 3 4 5 6 7 8 9 10 ; do # This works, even for Tru64, because only a single character # is extracted char=`expr $fullvarvalue : '\(.\)'` # FIXME: Tru64 Unix eliminates leading zeros (!) # How do we fix something that broken? fullvarvalue=`echo $fullvarvalue | sed -e 's/.\(.*\)/\1/'` case $char in a) char=10 ;; b) char=11 ;; c) char=12 ;; d) char=13 ;; e) char=14 ;; f) char=15 ;; esac # For Fortran, if the value is too big for an unsigned int, # we need to make it a signed (negative) int. Currently, the # types in this class are the minloc/maxloc types. if test $pos = 3 -a $char -ge 8 ; then #echo "for $var in position $pos found a value >= 8" char=`expr $char - 8` offset=-2147483648 fi value=`expr $value \* 16 + $char` done if test "$offset" != 0 ; then #echo "$fullf77var: $value, $offset" value=`expr $value + $offset` fi #echo "$fullf77var = $value" eval $fullf77var=$value done AC_SUBST(MPI_F77_CHAR) AC_SUBST(MPI_F77_SIGNED_CHAR) AC_SUBST(MPI_F77_UNSIGNED_CHAR) AC_SUBST(MPI_F77_WCHAR) AC_SUBST(MPI_F77_SHORT) AC_SUBST(MPI_F77_UNSIGNED_SHORT) MPI_F77_UNSIGNED=$MPI_F77_UNSIGNED_INT AC_SUBST(MPI_F77_UNSIGNED) AC_SUBST(MPI_F77_INT) AC_SUBST(MPI_F77_LONG) AC_SUBST(MPI_F77_UNSIGNED_LONG) AC_SUBST(MPI_F77_FLOAT) AC_SUBST(MPI_F77_DOUBLE) AC_SUBST(MPI_F77_LONG_DOUBLE) AC_SUBST(MPI_F77_UNSIGNED_LONG_LONG) MPI_F77_LONG_LONG_INT=$MPI_F77_LONG_LONG AC_SUBST(MPI_F77_LONG_LONG_INT) AC_SUBST(MPI_F77_LONG_LONG) AC_SUBST(MPI_F77_FLOAT_INT) AC_SUBST(MPI_F77_DOUBLE_INT) AC_SUBST(MPI_F77_LONG_INT) AC_SUBST(MPI_F77_SHORT_INT) AC_SUBST(MPI_F77_2INT) AC_SUBST(MPI_F77_LONG_DOUBLE_INT) AC_SUBST(MPI_F77_INT8_T) AC_SUBST(MPI_F77_INT16_T) AC_SUBST(MPI_F77_INT32_T) AC_SUBST(MPI_F77_INT64_T) AC_SUBST(MPI_F77_UINT8_T) AC_SUBST(MPI_F77_UINT16_T) AC_SUBST(MPI_F77_UINT32_T) AC_SUBST(MPI_F77_UINT64_T) AC_SUBST(MPI_F77_C_BOOL) AC_SUBST(MPI_F77_C_FLOAT_COMPLEX) # C_COMPLEX is an alias for FLOAT_COMPLEX MPI_F77_C_COMPLEX=$MPI_F77_C_FLOAT_COMPLEX AC_SUBST(MPI_F77_C_COMPLEX) AC_SUBST(MPI_F77_C_DOUBLE_COMPLEX) AC_SUBST(MPI_F77_C_LONG_DOUBLE_COMPLEX) # these two are not yet defined, but AC_SUBST only cares about them at # AC_OUTPUT-time AC_SUBST(MPI_F77_AINT) AC_SUBST(MPI_F77_OFFSET) # Try and compute the values of .true. and .false. in Fortran # This code has been removed because the Fortran binding code does # not yet support it. PAC_F77_LOGICALS_IN_C([$MPI_FINT]) # Get the INTEGER_KIND, ADDRESS_KIND and OFFSET_KIND if possible # # For Fortran 90, we'll also need MPI_ADDRESS_KIND and MPI_OFFSET_KIND # Since our compiler might BE a Fortran 90 compiler, try and determine the # values. if test -z "$FC" ; then PAC_F77_IS_FC([ FC=$F77 if test -z "$FCFLAGS" ; then FCFLAGS="$FFLAGS" fi ]) fi if test -n "$FC" ; then # Offset kind should be for 8 bytes if possible (Romio prefers that) # address should be sizeof void * (unless --with-aint-size has # been set) # FIXME in the current configure implementation OFFSET_KIND and # MPI_Offset won't always agree, but generally will. The MPI Standard # implies that these types must have identical size, so this is a bug # waiting to happen. if test "$with_aint_size" -gt 0 -a \ "$with_aint_size" -gt "$ac_cv_sizeof_void_p" ; then testsize=$with_aint_size else testsize=$ac_cv_sizeof_void_p fi if test "$testsize" = 0 ; then # Set a default testsize=4 fi dnl Using the {} around testsize helps the comments work correctly PAC_PROG_FC_INT_KIND(ADDRESS_KIND,${testsize},$CROSS_F90_ADDRESS_KIND) if test "$testsize" = 8 ; then OFFSET_KIND=$ADDRESS_KIND else PAC_PROG_FC_INT_KIND(OFFSET_KIND,8,$CROSS_F90_OFFSET_KIND) fi # PAC_PROG_FC_INT_KIND(INTEGER_KIND,$pac_cv_f77_sizeof_integer,$CROSS_F90_INTEGER_KIND) if test "$INTEGER_KIND" = "-1" ; then # Wild guess; probably means that Fortran 90 is not available AC_MSG_WARN([Unable to determine Fortran 90 KIND values for either address-sized integers or offset-sized integers. Using 4 in that case.]) INTEGER_KIND=4 fi # # Some compilers won't allow a -1 kind (e.g., absoft). In this case, # use a fallback (sizeof(int) kind) if test "$ADDRESS_KIND" = "-1" -o "$OFFSET_KIND" = "-1" ; then if test "$ADDRESS_KIND" = "-1" ; then ADDRESS_KIND=$INTEGER_KIND fi if test "$OFFSET_KIND" = "-1" ; then OFFSET_KIND=$INTEGER_KIND fi fi AC_LANG_PUSH([Fortran]) AC_CACHE_CHECK([if real*8 is supported in Fortran 90], [pac_cv_fort90_real8],[ AC_COMPILE_IFELSE([ AC_LANG_PROGRAM([],[ real*8 a]) ],[ pac_cv_fort90_real8=yes ],[ pac_cv_fort90_real8=no ]) ]) AC_LANG_POP([Fortran]) WTIME_DOUBLE_TYPE="DOUBLE PRECISION" # Save a copy of the original mpi_base.f90 file if test "$enable_fc" = "yes" -a "$pac_cv_fort90_real8" = "yes" ; then WTIME_DOUBLE_TYPE="REAL*8" fi # WTIME_DOUBLE_TYPE is substituted into mpi_base.f90 AC_SUBST(WTIME_DOUBLE_TYPE) fi # Make sure that address kind and offset kind have values. if test -z "$ADDRESS_KIND" ; then ADDRESS_KIND=0 fi if test -z "$OFFSET_KIND" ; then OFFSET_KIND=0 fi # Note, however, that zero value are (in all practical case) invalid # for Fortran 90, and indicate a failure. Test and fail if Fortran 90 # enabled. if test "$enable_fc" = "yes" ; then if test "$ADDRESS_KIND" -le 0 -o "$OFFSET_KIND" -le 0 ; then AC_MSG_ERROR([Unable to determine Fortran 90 integer kinds for MPI types. If you do not need Fortran 90, add --disable-fc to the configure options.]) # If the above is converted to a warning, you need to change # enable_fc and remote f90 from the bindings enable_fc=no fi fi AC_SUBST(ADDRESS_KIND) AC_SUBST(OFFSET_KIND) AC_SUBST(INTEGER_KIND) # Some compilers may require special directives to handle the common # block in a library. In particular, directives are needed for Microsoft # Windows to support dynamic library import. The following six # directives may be needed: # CMS\$ATTRIBUTES DLLIMPORT::/MPIPRIV1/ # CMS\$ATTRIBUTES DLLIMPORT::/MPIPRIV2/ # CMS\$ATTRIBUTES DLLIMPORT::/MPIPRIVC/ # CDEC\$ATTRIBUTES DLLIMPORT::/MPIPRIV1/ # CDEC\$ATTRIBUTES DLLIMPORT::/MPIPRIV2/ # CDEC\$ATTRIBUTES DLLIMPORT::/MPIPRIVC/ # CMS is for the Microsoft compiler, # CDEC is (we believe) for the DEC Fortran compiler. # We need to make this a configure-time variable because some compilers # (in particular, a version of the Intel Fortran compiler for Linux) # will read directives for other compilers and then flag as fatal # errors directives that it does not support but does recognize. DLLIMPORT="" AC_SUBST(DLLIMPORT) # FIXME: # We also need to include # SIZEOF_FC_MPI_OFFSET # SIZEOF_FC_MPI_AINT # # If other "kinds" are supported, MPI_SIZEOF needs to identify # those as well. This is very difficult to do in a general way. # To start with, we use the sizes determined for the Fortran 77 values. # These must be the same as for the Fortran 90 values. CROSS_F90_SIZEOF_INTEGER=${CROSS_F90_SIZEOF_INTEGER:-0} CROSS_F90_SIZEOF_REAL=${CROSS_F90_SIZEOF_REAL:-0} CROSS_F90_SIZEOF_DOUBLE_PRECISION=${CROSS_F90_SIZEOF_DOUBLE_PRECISION:-0} SIZEOF_FC_INTEGER=$CROSS_F90_SIZEOF_INTEGER SIZEOF_FC_REAL=$CROSS_F90_SIZEOF_REAL SIZEOF_FC_CHARACTER=1 SIZEOF_FC_DOUBLE_PRECISION=$CROSS_F90_SIZEOF_DOUBLE_PRECISION if test "$pac_cv_f77_sizeof_integer" -gt 0 -a \ "$SIZEOF_FC_INTEGER" = "0" ; then SIZEOF_FC_INTEGER=$pac_cv_f77_sizeof_integer fi if test "$pac_cv_f77_sizeof_real" -gt 0 -a "$SIZEOF_FC_REAL" = "0" ; then SIZEOF_FC_REAL=$pac_cv_f77_sizeof_real fi if test "$pac_cv_f77_sizeof_double_precision" -gt 0 -a \ "$SIZEOF_FC_DOUBLE_PRECISION" = "0" ; then SIZEOF_FC_DOUBLE_PRECISION=$pac_cv_f77_sizeof_double_precision fi AC_SUBST(SIZEOF_FC_INTEGER) AC_SUBST(SIZEOF_FC_REAL) AC_SUBST(SIZEOF_FC_DOUBLE_PRECISION) AC_SUBST(SIZEOF_FC_CHARACTER) # REQD is short for "real equal double precision" and is set to the # Fortran 90 comment character if true. This is necessary to # allow the mpi_sizeofs module to be built, since if this part of the # Fortran standard is violated by the compiler (unfortunately common, # as some applications are written to require this non-standard # version), the double precision versions of the MPI_SIZEOF routine # must be commented out of the module (!). REQD= if test "$SIZEOF_FC_REAL" = "$SIZEOF_FC_DOUBLE_PRECISION" ; then REQD="!" fi AC_SUBST(REQD) # Is integer*1 supported, and is it a different size than integer? REQI1="!" if test "$pac_cv_fort_integer1" = yes -a "$SIZEOF_FC_INTEGER" != 1 ; then REQI1= fi AC_SUBST(REQI1) # Is integer*2 supported, and is it a different size than integer? REQI2="!" if test "$pac_cv_fort_integer2" = yes -a "$SIZEOF_FC_INTEGER" != 2 ; then REQI2= fi AC_SUBST(REQI2) # Is integer*8 supported, and is it a different size than integer? REQI8="!" if test "$pac_cv_fort_integer8" = yes -a "$SIZEOF_FC_INTEGER" != 8 ; then REQI8= fi AC_SUBST(REQI8) # AC_LANG_C fi # ---------------------------------------------------------------------------- # C++ types # default to null types MPIR_CXX_BOOL=MPI_DATATYPE_NULL MPIR_CXX_COMPLEX=MPI_DATATYPE_NULL MPIR_CXX_DOUBLE_COMPLEX=MPI_DATATYPE_NULL MPIR_CXX_LONG_DOUBLE_COMPLEX=MPI_DATATYPE_NULL MPI_F77_CXX_BOOL=MPI_DATATYPE_NULL MPI_F77_CXX_FLOAT_COMPLEX=MPI_DATATYPE_NULL MPI_F77_CXX_DOUBLE_COMPLEX=MPI_DATATYPE_NULL MPI_F77_CXX_LONG_DOUBLE_COMPLEX=MPI_DATATYPE_NULL if test "$enable_cxx" = "yes" ; then AC_LANG_CPLUSPLUS AC_CHECK_SIZEOF(bool) # Find a C type that matches the size of the C++ boolean type case "$ac_cv_sizeof_bool" in $ac_cv_sizeof__Bool) bool_type=_Bool ;; $ac_cv_sizeof_unsigned_char) bool_type="unsigned char" ;; $ac_cv_sizeof_unsigned_short) bool_type="unsigned short" ;; $ac_cv_sizeof_unsigned_int) bool_type="unsigned int" ;; $ac_cv_sizeof_unsigned_long) bool_type="unsigned long" ;; $ac_cv_sizeof_unsigned_long_long) bool_type="unsigned long long" ;; *) AC_MSG_ERROR([unable to determine matching C type for C++ bool]) ;; esac AC_DEFINE_UNQUOTED([MPIR_CXX_BOOL_CTYPE],[$bool_type], [a C type used to compute C++ bool reductions]) AC_CHECK_HEADER(complex) if test "$ac_cv_header_complex" = "yes" ; then # The C++ complex types are all templated. We finagle this by # defining a standin name AC_CHECK_SIZEOF(Complex,0,[#include #include using namespace std; #define Complex complex ]) AC_CHECK_SIZEOF(DoubleComplex,0,[#include #include using namespace std; #define DoubleComplex complex ]) if test "$MPID_NO_LONG_DOUBLE" != yes ; then AC_CHECK_SIZEOF(LongDoubleComplex,0,[#include #include using namespace std; #define LongDoubleComplex complex ]) fi # If either complex or double complex have length 0, then mark # c++ complex as unavailable if test "$ac_cv_sizeof_Complex" != 0 -a \ "$ac_cv_sizeof_DoubleComplex" != 0 ; then AC_DEFINE(HAVE_CXX_COMPLEX,1,[Define is C++ supports complex types]) fi # Datatypes are given by # 0x4c00 (1 byte) (1 byte) # where the unique nums are # 33,34,35,36 case "$ac_cv_sizeof_bool" in 1) MPIR_CXX_BOOL=0x4c000133 ;; 2) MPIR_CXX_BOOL=0x4c000233 ;; 4) MPIR_CXX_BOOL=0x4c000433 ;; 8) MPIR_CXX_BOOL=0x4c000833 ;; *) ;; esac case "$ac_cv_sizeof_Complex" in 8) MPIR_CXX_COMPLEX=0x4c000834 ;; 16) MPIR_CXX_COMPLEX=0x4c001034 ;; *) ;; esac case "$ac_cv_sizeof_DoubleComplex" in 8) MPIR_CXX_DOUBLE_COMPLEX=0x4c000835 ;; 16) MPIR_CXX_DOUBLE_COMPLEX=0x4c001035 ;; 32) MPIR_CXX_DOUBLE_COMPLEX=0x4c002035 ;; *) ;; esac case "$ac_cv_sizeof_LongDoubleComplex" in 8) MPIR_CXX_LONG_DOUBLE_COMPLEX=0x4c000836 ;; 16) MPIR_CXX_LONG_DOUBLE_COMPLEX=0x4c001036 ;; 24) MPIR_CXX_LONG_DOUBLE_COMPLEX=0x4c001836 ;; 32) MPIR_CXX_LONG_DOUBLE_COMPLEX=0x4c002036 ;; *) ;; esac fi AC_LANG_C # Make these available to the collective operations and other code AC_DEFINE_UNQUOTED(MPIR_CXX_BOOL_VALUE,$MPIR_CXX_BOOL,[Define as the MPI Datatype handle for MPI::BOOL]) AC_DEFINE_UNQUOTED(MPIR_CXX_COMPLEX_VALUE,$MPIR_CXX_COMPLEX,[Define as the MPI Datatype handle for MPI::COMPLEX]) AC_DEFINE_UNQUOTED(MPIR_CXX_DOUBLE_COMPLEX_VALUE,$MPIR_CXX_DOUBLE_COMPLEX,[Define as the MPI Datatype handle for MPI::DOUBLE_COMPLEX]) AC_DEFINE_UNQUOTED(MPIR_CXX_LONG_DOUBLE_COMPLEX_VALUE,$MPIR_CXX_LONG_DOUBLE_COMPLEX,[Define as the MPI Datatype handle for MPI::LONG_DOUBLE_COMPLEX]) # compute F77 decimal constant values for these types PAC_CONV_HEX_TO_DEC([$MPIR_CXX_BOOL], [MPI_F77_CXX_BOOL]) PAC_CONV_HEX_TO_DEC([$MPIR_CXX_COMPLEX], [MPI_F77_CXX_FLOAT_COMPLEX]) PAC_CONV_HEX_TO_DEC([$MPIR_CXX_DOUBLE_COMPLEX], [MPI_F77_CXX_DOUBLE_COMPLEX]) PAC_CONV_HEX_TO_DEC([$MPIR_CXX_LONG_DOUBLE_COMPLEX],[MPI_F77_CXX_LONG_DOUBLE_COMPLEX]) fi AC_SUBST([MPIR_CXX_BOOL]) AC_SUBST([MPIR_CXX_COMPLEX]) AC_SUBST([MPIR_CXX_DOUBLE_COMPLEX]) AC_SUBST([MPIR_CXX_LONG_DOUBLE_COMPLEX]) AC_SUBST([MPI_F77_CXX_BOOL]) AC_SUBST([MPI_F77_CXX_FLOAT_COMPLEX]) AC_SUBST([MPI_F77_CXX_DOUBLE_COMPLEX]) AC_SUBST([MPI_F77_CXX_LONG_DOUBLE_COMPLEX]) # ---------------------------------------------------------------------------- # Check for the alignment rules moves with types int64_t etc. These # are used in the datatype code to perform pack and unpack operations. # These only determine if different alignments *work*, not whether they # work efficiently. The datatype pack code (should) allow the developer # to include stricter alignment rules than are needed for correctness to # get better performance. if test "$ac_cv_c_int64_t" != "no" -o -n "$INT64_T" ; then default_int64_t_alignment=${CROSS_INT64_T_ALIGNMENT:-"unknown"} if test -z "$INT64_T" ; then if test "$ac_cv_c_int64_t" = yes ; then INT64_T="int64_t" else INT64_T="$ac_cv_int64_t" fi fi # We use the type that we're going use for int64. AC_CACHE_CHECK([for alignment restrictions on $INT64_T],pac_cv_int64_t_alignment,[ AC_TRY_RUN([ #include #include int main(int argc, char **argv ) { $INT64_T *p1, v; char *buf_p = (char *)malloc( 64 ), *bp; bp = buf_p; /* Make bp aligned on 4, not 8 bytes */ if (!( (long)bp & 0x7 ) ) bp += 4; p1 = ($INT64_T *)bp; v = -1; *p1 = v; if (!( (long)bp & 0x3 ) ) bp += 2; p1 = ($INT64_T *)bp; *p1 = 1; if (!( (long)bp & 0x1 ) ) bp += 1; p1 = ($INT64_T *)bp; *p1 = 1; return 0; } ],pac_cv_int64_t_alignment=no,pac_cv_int64_t_alignment=yes,pac_cv_int64_t_alignment=$default_int64_t_alignment) ]) if test "$pac_cv_int64_t_alignment" = "no" ; then AC_DEFINE(HAVE_ANY_INT64_T_ALIGNMENT,1,[Define if int64_t works with any alignment]) fi fi if test "$ac_cv_int32_t" != "no" ; then default_int32_t_alignment=${CROSS_INT32_T_ALIGNMENT:-"unknown"} if test -z "$INT32_T" ; then if test "$ac_cv_c_int32_t" = yes ; then INT32_T="int32_t" else INT32_T="$ac_cv_int32_t" fi fi AC_CACHE_CHECK([for alignment restrictions on int32_t],pac_cv_int32_t_alignment,[ AC_TRY_RUN([ #include #include int main(int argc, char **argv ) { $INT32_T *p1, v; char *buf_p = (char *)malloc( 64 ), *bp; bp = buf_p; /* Make bp aligned on 4, not 8 bytes */ if (!( (long)bp & 0x7 ) ) bp += 4; p1 = ($INT32_T *)bp; v = -1; *p1 = v; if (!( (long)bp & 0x3 ) ) bp += 2; p1 = ($INT32_T *)bp; *p1 = 1; if (!( (long)bp & 0x1 ) ) bp += 1; p1 = ($INT32_T *)bp; *p1 = 1; return 0; } ],pac_cv_int32_t_alignment=no,pac_cv_int32_t_alignment=yes,pac_cv_int32_t_alignment=$default_int32_t_alignment) ]) if test "$pac_cv_int32_t_alignment" = "no" ; then AC_DEFINE(HAVE_ANY_INT32_T_ALIGNMENT,1,[Define if int32_t works with any alignment]) fi fi # Get the size for the bsendoverhead AC_CHECK_SIZEOF(MPIR_Bsend_data_t,0,[ #define MPI_Datatype int #ifdef HAVE_STDLIB_H #include #endif #ifdef HAVE_STDINT_H #include #endif #include "${master_top_srcdir}/src/include/mpibsend.h"] ) if test "$ac_cv_sizeof_MPIR_Bsend_data_t" = "0" ; then AC_MSG_ERROR([Unable to determine the size of MPI_BSEND_OVERHEAD"]) # In the past, a default of 128 was used (still likely good enough), # but the autoconf SIZEOF macro has been changed to ignore the second # argument, so code that depended on the prior defined behavior now # silently breaks. fi BSEND_OVERHEAD=$ac_cv_sizeof_MPIR_Bsend_data_t export BSEND_OVERHEAD AC_SUBST(BSEND_OVERHEAD) # Check for special compile characteristics # If we are either gcc or icc, see if we can use __asm__ # We test on prog_gcc to allow gcc by any name; if we are using # icc, the value of CC must be icc for this test to pass if test "$ac_cv_prog_gcc" = "yes" -o "$ac_cv_prog_CC" = "icc" ; then AC_MSG_CHECKING([for gcc __asm__ and pentium cmpxchgl instruction]) AC_TRY_RUN([ int main(int argc, char *argv[]) { long int compval = 10; volatile long int *p = &compval; long int oldval = 10; long int newval = 20; char ret; long int readval; __asm__ __volatile__ ("lock; cmpxchgl %3, %1; sete %0" : "=q" (ret), "=m" (*p), "=a" (readval) : "r" (newval), "m" (*p), "a" (oldval) : "memory"); return (compval == 20) ? 0 : -1; } ], AC_MSG_RESULT(yes) AC_DEFINE(HAVE_GCC_AND_PENTIUM_ASM, 1,[Define if using gcc on a system with an Intel Pentium class chip]) lac_cv_use_atomic_updates="yes", AC_MSG_RESULT(no), AC_MSG_RESULT(not checking when cross compiling)) fi if test "$lac_cv_use_atomic_updates" = "yes" ; then AC_DEFINE(USE_ATOMIC_UPDATES,, [Define if assembly language atomic update macros should be used (if available)]) fi # check for x86_64 if test "$ac_cv_prog_gcc" = "yes" ; then AC_MSG_CHECKING([for gcc __asm__ and AMD x86_64 cmpxchgq instruction]) AC_TRY_RUN([ int main(int argc, char *argv[]) { long int compval = 10; volatile long int *p = &compval; long int oldval = 10; long int newval = 20; char ret; long int readval; __asm__ __volatile__ ("lock; cmpxchgq %3, %1; sete %0" : "=q" (ret), "=m" (*p), "=a" (readval) : "r" (newval), "m" (*p), "a" (oldval) : "memory"); return (compval == 20) ? 0 : -1; } ], AC_MSG_RESULT(yes) AC_DEFINE(HAVE_GCC_AND_X86_64_ASM, 1,[Define if using gcc on a system with an AMD x86_64 class chip]), AC_MSG_RESULT(no), AC_MSG_RESULT(not checking when cross compiling)) fi dnl dnl check for asm() format dnl dnl AC_MSG_CHECKING([for asm() and pentium cmpxchgl instruction]) dnl AC_TRY_RUN([ dnl int main(int argc, char *argv[]) dnl { dnl long int compval = 10; dnl volatile long int *p = &compval; dnl long int oldval = 10; dnl long int newval = 20; dnl char ret; dnl long int readval; dnl asm("lock; cmpxchgl %3, %1; sete %0" dnl : "=q" (ret), "=m" (*p), "=a" (readval) dnl : "r" (newval), "m" (*p), "a" (oldval) : "memory"); dnl return (compval == 20) ? 0 : -1; dnl } dnl ], AC_MSG_RESULT(yes) dnl AC_DEFINE(HAVE_PENTIUM_ASM, 1,[Define if using asm() on a system with an Intel Pentium class chip]), dnl AC_MSG_RESULT(no), AC_MSG_RESULT(not checking when cross compiling)) dnl dnl dnl check for IA64 dnl if test "$ac_cv_prog_gcc" = "yes" ; then AC_MSG_CHECKING([for gcc __asm__ and IA64 xchg4 instruction]) AC_TRY_RUN([ unsigned long _InterlockedExchange(volatile void *ptr, unsigned long x) { unsigned long result; __asm__ __volatile ("xchg4 %0=[%1],%2" : "=r" (result) : "r" (ptr), "r" (x) : "memory"); return result; } int main(int argc, char *argv[]) { long val = 1; volatile long *p = &val; long oldval = _InterlockedExchange(p, (unsigned long)2); return (oldval == 1 && val == 2) ? 0 : -1; } ], AC_MSG_RESULT(yes) AC_DEFINE(HAVE_GCC_AND_IA64_ASM, 1,[Define if using gcc on a system with an IA64 class chip]), AC_MSG_RESULT(no), AC_MSG_RESULT(not checking when cross compiling)) fi # ----------------------------------------------------------------------------- # Check for support of enable-coverage. Put this near the end of the tests # because the coverage options may affect the other tests. PAC_ENABLE_COVERAGE # ----------------------------------------------------------------------------- # Look for Standard headers AC_HEADER_STDC # Check for a specific header # Grrr. OS/X fails the test for sys/uio.h because uio *requires* sys/types.h # to compile. Thus, we'll make that a separate test # stddef.h is sometimes needed for types like wchar_t AC_CHECK_HEADERS(stdlib.h stdarg.h sys/types.h string.h inttypes.h limits.h stddef.h errno.h sys/socket.h sys/time.h unistd.h endian.h assert.h sys/param.h) AC_CACHE_CHECK([for sys/uio.h],ac_cv_header_sys_uio_h,[ AC_TRY_COMPILE([ #include #include ],[int a;],ac_cv_header_sys_uio_h=yes,ac_cv_header_sys_uio_h=no)]) if test "$ac_cv_header_sys_uio_h" = yes ; then AC_DEFINE(HAVE_SYS_UIO_H,1,[Define if you have the header file.]) fi # Check for special types AC_TYPE_SIZE_T # These are used to support timeouts AC_CHECK_FUNCS(setitimer alarm) # These are used for error reporting AC_CHECK_FUNCS(vsnprintf vsprintf) if test "$ac_cv_func_vsnprintf" = "yes" ; then # vsnprintf may be declared in stdio.h and may need stdarg.h PAC_FUNC_NEEDS_DECL([#include #include ],vsnprintf) fi # We would like to use strerror in the file namepublisher; it is also used # in MPIU_Strerror (whose implementation is broken if strerror is not found) AC_CHECK_FUNCS(strerror strncasecmp) AC_FUNC_STRERROR_R if test "$ac_cv_func_strerror_r" = "yes" ; then PAC_FUNC_NEEDS_DECL([#include ],strerror_r) fi # Use snprintf if possible when creating messages AC_CHECK_FUNCS(snprintf) if test "$ac_cv_func_snprintf" = "yes" ; then PAC_FUNC_NEEDS_DECL([#include ],snprintf) fi # qsort will be used in MPI_Comm_split, if available AC_CHECK_FUNCS([qsort]) # if we are using stdarg, we may need va_copy . Test to see if we have it # Since it may be a built-in instead of a function, we must try to # compile and link a program that uses it. # va_copy is currently used only in src/util/dbg_printf.c, in an obsolete # debugging routine. We may want to withdraw this (saving the # test in confdb/aclocal_cc.m4). AC_CACHE_CHECK([for va_copy],pac_cv_func_va_copy,[ AC_TRY_LINK([ #include void foo1( char *fmt, ... ) { va_list ap, list; va_start(ap,fmt); va_copy(list,ap); va_end(list); va_end(ap); } ],[foo1("a test %d", 3);],pac_cv_func_va_copy=yes,pac_cv_func_va_copy=no)]) if test "$pac_cv_func_va_copy" = "yes" ; then AC_DEFINE(HAVE_VA_COPY,1,[Define if we have va_copy]) else AC_CACHE_CHECK([for __va_copy],pac_cv_func___va_copy,[ AC_TRY_LINK([ #include void foo1( char *fmt, ... ) { va_list ap, list; va_start(ap,fmt); __va_copy(list,ap); va_end(list); va_end(ap); } ],[foo1("a test %d", 3);],pac_cv_func___va_copy=yes,pac_cv_func___va_copy=no)]) if test "$pac_cv_func___va_copy" = "yes" ; then AC_DEFINE(HAVE___VA_COPY,1,[Define if we have __va_copy]) fi fi PAC_C_MACRO_VA_ARGS dnl dnl If internationalization selected, try to find the needed functions dnl if test "$enable_internat" = "yes" ; then dnl AC_CHECK_HEADERS(libintl.h) dnl AC_CHECK_FUNCS(gettext dgettext) dnl if test "$ac_cv_header_libintl" = "yes" -a \ dnl "$ac_cv_func_gettext" = "yes" -a \ dnl "$ac_cv_func_dgettext" = "yes" ; then dnl AC_DEFINE(USE_GETTEXT,1,[Define if messages should use gettext]) dnl else dnl AC_MSG_WARN([Cannot use internationalization because necessary headers and functions are not available]) dnl fi dnl fi # Check for alloca function. May set HAVE_ALLOCA_H and HAVE_ALLOCA AC_FUNC_ALLOCA # We don't use alloca unless USE_ALLOCA is also set. AC_ARG_ENABLE(alloca, AC_HELP_STRING([--enable-alloca], [Use alloca to allocate temporary memory if available]),,enable_alloca=no) if test "$enable_alloca" = yes ; then AC_DEFINE(USE_ALLOCA,1,[Define if alloca should be used if available]) fi if test "$enable_g_mem" != "yes" ; then # Strdup is needed only if memory tracing is not enabled. AC_CHECK_FUNCS(strdup) if test "$ac_cv_func_strdup" = "yes" ; then # Do we need to declare strdup? PAC_FUNC_NEEDS_DECL([#include ],strdup) fi else # search.h is used for fancier output from trmem. Disabled for now, # since the tsearch routines have problematic prototypes. AC_CHECK_HEADERS(search) AC_CHECK_FUNCS(tsearch) # Check that we can compile tsearch without error. Try to compile # it with the header and the char * args if test "$ac_cv_func_tsearch" = "yes" ; then AC_CACHE_CHECK([whether tsearch requires char* args], pac_cv_tsearch_charp,[ AC_TRY_COMPILE([#include char *tsearch( char *k, char **r, (int (*)())compare ) { return k; }], [int f=0;],pac_cv_tsearch_charp=yes,pac_cv_tsearch_charp=no)]) if test "$pac_cv_tsearch_charp" = "yes" ; then # this should consider defining a name with the argument type # so that no further ifdefs are needed AC_DEFINE(USE_TSEARCH_WITH_CHARP,1,[Define if tsearch requires char pointers]) fi fi # Note that HPUX and AIX may require _INCLUDE_XOPEN_SOURCE or # _XOPEN_SOURCE be defined respectively. fi # ---------------------------------------------------------------------------- # Look for some non-posix, but commonly provided functions # ---------------------------------------------------------------------------- # mkstemp() is a better replacement for mktemp() AC_HAVE_FUNCS(mkstemp) if test "$ac_cv_func_mkstemp" = "yes" ; then PAC_FUNC_NEEDS_DECL([#include ],mkstemp) fi # fdopen() converts from an fd to a FILE* AC_HAVE_FUNCS(fdopen) if test "$ac_cv_func_fdopen" = "yes" ; then PAC_FUNC_NEEDS_DECL([#include ],fdopen) fi # putenv() sets environment variable AC_HAVE_FUNCS(putenv) if test "$ac_cv_func_putenv" = "yes" ; then PAC_FUNC_NEEDS_DECL([#include ],putenv) fi # ---------------------------------------------------------------------------- # Support for timers. The following code processes the # --enable-timer-type=name argument and selects the timer based on # both that field and what configure is able to determine is available. # The file src/include/mpichtimer.h is also created. # Note that at least the handling of the "device" option must come *after* # the setup_device script is loaded so that the device can set the appropriate # fields. For now, we've split this so that there is an update to the timer # after the setup_device script is loaded, but we should consider moving # this entire block. # FIXME DJG setup_device has been eliminated in favor of subconfigure.m4 files # ---------------------------------------------------------------------------- # Default type for timer stamp. MPID_TIMER_TYPE=long AC_SUBST(MPID_TIMER_TYPE) # clock_gettime is the POSIX gettimeofday # gethrtime is the Solaris high-resolution timer dnl dnl Specific checks that a function works correctly dnl dnl Now that we know what the options are, choose the timer to use dnl dnl The default preference is dnl Solaris gethrtime dnl Posix clock_gettime dnl Unix gettimeofday (one of two versions) dnl dnl Also available are various hardware time stamps dnl Linux-x86 cycle counter dnl Linux-alpha cycle counter dnl dnl We also allow --enable-timer-type=name to select a timer type AC_ARG_ENABLE(timer-type, [ --enable-timer-type=name - Select the timer to use for MPI_Wtime and internal timestamps. gethrtime - Solaris timer (Solaris systems only) clock_gettime - Posix timer (where available) gettimeofday - Most Unix systems linux86_cycle - Linux x86; returns cycle counts, not time in seconds* gcc_ia64_cycle - IPF ar.itc timer* mach_absolute_time - Mach absolute time (alternative to clock_gettime for OSX) device - The timer is provided by the device *Note that the cycle timers are intended to be used by MPICH developers for internal low-level timing. Normal users should not use these as they are not guaranteed to be accurate in certain situations. linuxalpha_cycle is no longer supported. ],timer_type=$enable_timer_type) if test -z "$timer_type" ; then # Try to pick a timer based on what is available AC_CHECK_FUNCS(clock_gettime clock_getres gethrtime mach_absolute_time gettimeofday) if test "$ac_cv_func_gethrtime" = "yes" ; then # Sigh. The Solaris include files do not define hrtime_t # Before we accept this choice, make sure that we can # do arithmetic with hrtime_t . AC_CACHE_CHECK([that hrtime_t is properly defined for gethrtime], pac_cv_hrtime_works,[ AC_TRY_COMPILE([ #include ],[hrtime_t t1, t2; t1 = 1; t2 = 2; t1 = t1 + t2;], pac_cv_hrtime_works=yes,pac_cv_hrtime_works=no)]) # A more ambitious test would look to see if casting an # hrtime_t to int64_t works, and even more ambitious # would check whether long or long long was 64 bits (or even # better, the sizeof hrtime_t). fi if test "$ac_cv_func_gethrtime" = "yes" -a \ "$pac_cv_hrtime_works" = "yes" ; then timer_type=gethrtime elif test "$ac_cv_func_clock_gettime" = "yes" -a \ "$ac_cv_func_clock_getres" = "yes" ; then # Test on both because some systems (e.g., cygwin) provide # clock_gettime but not clock_getres timer_type=clock_gettime elif test "$ac_cv_func_mach_absolute_time" = "yes" ; then timer_type=mach_absolute_time elif test "$ac_cv_func_gettimeofday" = "yes" ; then timer_type=gettimeofday fi fi if test -z "$timer_type" ; then AC_MSG_ERROR([No timer found]) fi # Check for valid timer and select datatypes for the time stamp case "$timer_type" in gethrtime) MPID_TIMER_TYPE=hrtime_t AC_CHECK_FUNC(gethrtime,,[ AC_MSG_ERROR([Requested timer gethrtime is not available]) ]) ;; clock_gettime) missing_function=no AC_SEARCH_LIBS([clock_gettime],[rt],,AC_MSG_ERROR([clock_gettime is not available])) AC_SEARCH_LIBS([clock_getres],[rt],,AC_MSG_ERROR([clock_getres is not available])) MPID_TIMER_TYPE="struct timespec" # AIX does not always define struct timespec (!) # Make sure that we can use struct timespec AC_CACHE_CHECK([whether struct timespec is defined in time.h], pac_cv_struct_timespec_defined,[ AC_TRY_COMPILE([ #include ],[ struct timespec t;],pac_cv_struct_timespec_defined=yes, pac_cv_struct_timespec_defined=no) ]) if test "$pac_cv_struct_timespec_defined" != "yes" ; then # Try again, but with -D_XOPEN_SOURCE=500 (works for AIX) AC_CACHE_CHECK([whether struct timespec is defined in time.h with _XOPEN_SOURCE=500], pac_cv_struct_timespec_defined_with_xopen500,[ AC_TRY_COMPILE([ #define _XOPEN_SOURCE 500 #include ],[ struct timespec t;],pac_cv_struct_timespec_defined_with_xopen500=yes, pac_cv_struct_timespec_defined_with_xopen500=no) ]) if test "$pac_cv_struct_timespec_defined_with_xopen500" = "yes" ; then # We need to define _XOPEN_SOURCE=500, but we need to ensure that # this is done before any include files are loaded. At # this point it is really too late to add this definition, # since it may make other tests incompatible. AC_MSG_ERROR([The available timer requires _XOPEN_SOURCE=500. Add -D_XOPEN_SOURCE=500 to CFLAGS and rerun configure]) fi fi # # FreeBSD 4.3 incorrectly puts the header into sys/time.h; # time.h is required (see pages 45 and 46 in the POSIX standard). # See if we can compile AC_CACHE_CHECK([for CLOCK_REALTIME defined in time.h],pac_cv_posix_clock_realtime,[ AC_TRY_COMPILE([ #include ],[ clockid_t cid = CLOCK_REALTIME;],pac_cv_posix_clock_realtime=yes, pac_cv_posix_clock_realtime=no)]) if test "$pac_cv_posix_clock_realtime" = "no" ; then AC_MSG_WARN([POSIX timer requires definitions in time.h]) # Check for the definition in sys/time.h, which is where # OpenBSD and FreeBSD have put it by mistake AC_TRY_COMPILE([ #include #include ],[ clockid_t cid = CLOCK_REALTIME;],pac_cv_posix_clock_realtime=yes, pac_cv_posix_clock_realtime=no) if test "$pac_cv_posix_clock_realtime" = yes ; then AC_MSG_WARN([sys/time.h required for POSIX timer]) AC_DEFINE(NEEDS_SYS_TIME_H,1,[Define if sys/time.h is required to get timer definitions]) else AC_MSG_ERROR([Cannot find the definition of CLOCK_REALTIME for the POSIX timer]) fi fi ;; gettimeofday) MPID_TIMER_TYPE="struct timeval" # We may have already tested for gettimeofday. If we got a "yes", # we're good to go if test "$ac_cv_func_gettimeofday" != "yes" ; then AC_CHECK_FUNC(gettimeofday,,[ AC_MSG_ERROR([Requested timer gettimeofday is not available]) ]) fi ;; linux86_cycle|linux86_cycle_2) # The following AC_TRY_RUN statements are needed because x86_64 compilers # usually know about rdtscp but the cpu may or may not actually implement the # feature. This is not cross-compile safe, unfortunately. In the long run we # should allow the user to override this with a configure flag. AC_CACHE_CHECK([that linux86 cycle counter is available], pac_cv_linux86_cycle, AC_TRY_RUN([ int main() { /* rdtscp */ long long var, *var_ptr=&var; __asm__ __volatile__("rdtscp; shl \$32, %%rdx; or %%rdx, %%rax" : "=a" (*var_ptr) : : "ecx", "rdx"); return 0; } ],pac_cv_linux86_cycle=rdtscp, AC_TRY_RUN([[ int main() { /* cpuid 64 */ long long var, *var_ptr=&var; __asm__ __volatile__("push %%rbx ; cpuid ; rdtsc ; pop %%rbx ; shl $32, %%rdx; or %%rdx, %%rax" : "=a" (*var_ptr) : : "ecx", "rdx"); return 0; } ]],pac_cv_linux86_cycle=cpuid_rdtsc64, AC_TRY_RUN([[[ int main() { /* cpuid 32 */ long long var, *var_ptr=&var; __asm__ __volatile__("push %%ebx ; cpuid ; rdtsc ; pop %%ebx" : "=A" (*var_ptr) : : "ecx"); return 0; } ]]],pac_cv_linux86_cycle=cpuid_rdtsc32, AC_TRY_RUN([[[[ int main() { /* simple */ long long var, *var_ptr=&var; __asm__ __volatile__("rdtsc" : "=A" (*var_ptr)); return 0; } ]]]],pac_cv_linux86_cycle=rdtsc, pac_cv_linux86_cycle=no) ) ), dnl The if-cross-compiling clause from the first AC_TRY_RUN. Hope that if the dnl compiler knows about the instruction then it's supported by the target dnl platform. AC_TRY_COMPILE(,[[ long long var, *var_ptr=&var; __asm__ __volatile__("rdtscp; shl \$32, %%rdx; or %%rdx, %%rax" : "=a" (*var_ptr) : : "ecx", "rdx"); ]],pac_cv_linux86_cycle=rdtscp, AC_TRY_COMPILE(,[[[ long long var, *var_ptr=&var; __asm__ __volatile__("push %%rbx ; cpuid ; rdtsc ; pop %%rbx ; shl $32, %%rdx; or %%rdx, %%rax" : "=a" (*var_ptr) : : "ecx", "rdx"); ]]],pac_cv_linux86_cycle=cpuid_rdtsc64, AC_TRY_COMPILE(,[[[[ long long var, *var_ptr=&var; __asm__ __volatile__("push %%ebx ; cpuid ; rdtsc ; pop %%ebx" : "=A" (*var_ptr) : : "ecx"); ]]]],pac_cv_linux86_cycle=cpuid_rdtsc32, AC_TRY_COMPILE(,[[[[[ long long var, *var_ptr=&var; __asm__ __volatile__("rdtsc" : "=A" (*var_ptr)); ]]]]],pac_cv_linux86_cycle=rdtsc, pac_cv_linux86_cycle=no) ) ) ) ) ) case "$pac_cv_linux86_cycle" in "rdtscp") AC_DEFINE(LINUX86_CYCLE_RDTSCP,1,[Define which x86 cycle counter to use]) ;; "cpuid_rdtsc64") AC_DEFINE(LINUX86_CYCLE_CPUID_RDTSC64,1,[Define which x86 cycle counter to use]) ;; "cpuid_rdtsc32") AC_DEFINE(LINUX86_CYCLE_CPUID_RDTSC32,1,[Define which x86 cycle counter to use]) ;; "rdtsc") AC_DEFINE(LINUX86_CYCLE_RDTSC,1,[Define which x86 cycle counter to use]) ;; *) cpu_gcc_x86_cycle=no ;; esac if test "$cpu_gcc_x86_cycle" = "no" ; then AC_MSG_ERROR([Linux86 cycle counter is not available on this system and or with the $CC compiler]) fi MPID_TIMER_TYPE="long long" ;; gcc_ia64_cycle) AC_CACHE_CHECK([that IPF timer is available], pac_cv_ia64_cycle,[ AC_TRY_COMPILE(,[ long var, *var_ptr=&var; #ifdef __INTEL_COMPILER #include "ia64regs.h" var=__getReg(_IA64_REG_AR_ITC); #else __asm__ __volatile__("mov %0=ar.itc" : "=r" (var_ptr)); #endif ],pac_cv_gcc_ia64_cycle=yes,pac_cv_gcc_ia64_cycle=no)]) if test "$pac_cv_gcc_ia64_cycle" != "yes" ; then AC_MSG_ERROR([IPF cycle counter is not available on this system and or with the $CC compiler]) fi MPID_TIMER_TYPE="long" ;; linuxalpha_cycle) AC_MSG_ERROR([linuxalpha_cycle is no longer supported]) ;; mach_absolute_time) AC_CHECK_FUNC(mach_absolute_time,,[AC_MSG_ERROR([mach_absolute_time is not available])]) AC_CHECK_FUNC(mach_timebase_info,,[AC_MSG_ERROR([mach_timebase_info is not available])]) MPID_TIMER_TYPE="uint64_t" ;; device) # The device selected should export the datatype for the timer # in MPID_DEVICE_TIMER_TYPE if something other than long is needed if test -n "$MPID_DEVICE_TIMER_TYPE" ; then MPID_TIMER_TYPE=$MPID_DEVICE_TIMER_TYPE fi ;; *) AC_MSG_ERROR([Invalid timer type $timer_type]) ;; esac # Convert timer type to upper case timer_type=`echo $timer_type | \ tr 'abcdefghijklmnopqrstuvwxyz' 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'` MPICH_TIMER_KIND=USE_$timer_type AC_SUBST(MPICH_TIMER_KIND) # ---------------------------------------------------------------------------- # End of code for timer support (except for ac_ OUTPUT) # ---------------------------------------------------------------------------- # Setup other replaceable values AC_SUBST(MPILIBNAME) AC_SUBST(PMPILIBNAME) if test "$NEEDSPLIB" = "yes" ; then LPMPILIBNAME="-l${PMPILIBNAME}" fi AC_SUBST(LPMPILIBNAME) # Note that aint_size must be used instead of void_p where the desired check # is on the size of MPI_Aint aint_size=$ac_cv_sizeof_void_p if test "$with_aint_size" -gt 0 ; then aint_size=$with_aint_size if test "$aint_size" != "$ac_cv_sizeof_void_p" ; then AC_MSG_RESULT([Overriding MPI_Aint to be $aint_size bytes]) fi fi MPI_AINT=int for type in int long long_long short ; do eval len=\$ac_cv_sizeof_$type if test "$len" = "$aint_size" ; then MPI_AINT=`echo $type | sed -e 's/_/ /'` # Make the sizeof AINT available to other configures MPI_SIZEOF_AINT=$len export MPI_SIZEOF_AINT case $type in int) MPI_AINT_FMT_DEC_SPEC="%d" MPI_AINT_FMT_HEX_SPEC="%x" MPIR_AINT_MAX="INT_MAX" ;; long) MPI_AINT_FMT_DEC_SPEC="%ld" MPI_AINT_FMT_HEX_SPEC="%lx" MPIR_AINT_MAX="LONG_MAX" ;; long_long) MPI_AINT_FMT_DEC_SPEC="%lld" MPI_AINT_FMT_HEX_SPEC="%llx" MPIR_AINT_MAX="LLONG_MAX" ;; short) MPI_AINT_FMT_DEC_SPEC="%hd" MPI_AINT_FMT_HEX_SPEC="%hx" MPIR_AINT_MAX="SHRT_MAX" ;; *) AC_MSG_WARN([unable to determine format specifiers for MPI_Aint, defaulting to int]) MPI_AINT_FMT_DEC_SPEC="%d" MPI_AINT_FMT_HEX_SPEC="%x" MPIR_AINT_MAX="INT_MAX" ;; esac export MPI_AINT_FMT_DEC_SPEC MPI_AINT_FMT_HEX_SPEC break fi done AC_SUBST(MPI_AINT) AC_SUBST(MPI_AINT_FMT_DEC_SPEC) AC_SUBST(MPI_AINT_FMT_HEX_SPEC) AC_DEFINE_UNQUOTED([MPIR_AINT_MAX],[$MPIR_AINT_MAX],[limits.h _MAX constant for MPI_Aint]) # If sizeof(mpi_aint) = sizeof(int), set this value if test "$ac_cv_sizeof_int" = "$aint_size" ; then AC_DEFINE(SIZEOF_INT_IS_AINT,1,[define if sizeof(int) = sizeof(MPI_Aint)]) fi # Find a pointer-sized int for type in int long long_long short ; do eval len=\$ac_cv_sizeof_$type if test "$len" = "$ac_cv_sizeof_void_p" ; then case $type in int) MPIR_PINT_FMT_DEC_SPEC="\"%d\"" MPIR_UPINT_FMT_DEC_SPEC="\"%u\"" ;; long) MPIR_PINT_FMT_DEC_SPEC="\"%ld\"" MPIR_UPINT_FMT_DEC_SPEC="\"%lu\"" ;; long_long) MPIR_PINT_FMT_DEC_SPEC="\"%lld\"" MPIR_UPINT_FMT_DEC_SPEC="\"%llu\"" ;; short) MPIR_PINT_FMT_DEC_SPEC="\"%hd\"" MPIR_UPINT_FMT_DEC_SPEC="\"%hu\"" ;; *) AC_MSG_WARN([unable to determine format specifiers for MPIR_Pint, defaulting to int]) MPIR_PINT_FMT_DEC_SPEC="\"%d\"" MPIR_UPINT_FMT_DEC_SPEC="\"%u\"" ;; esac MPIR_PINT=`echo $type | sed -e 's/_/ /'` break fi done AC_DEFINE_UNQUOTED(MPIR_Pint,$MPIR_PINT,[MPIR_Pint is a pointer-sized integer]) # allow @MPIR_PINT@ substitution in glue_romio.h AC_SUBST([MPIR_PINT]) AC_DEFINE_UNQUOTED(MPIR_PINT_FMT_DEC_SPEC, $MPIR_PINT_FMT_DEC_SPEC,[MPIR_PINT_FMT_DEC_SPEC is the format specifier for printing Pint as a decimal]) AC_DEFINE_UNQUOTED(MPIR_Upint,unsigned $MPIR_PINT,[MPIR_Upint is an unsigned pointer-sized integer]) AC_DEFINE_UNQUOTED(MPIR_UPINT_FMT_DEC_SPEC, $MPIR_UPINT_FMT_DEC_SPEC,[MPIR_UPINT_FMT_DEC_SPEC is the format specifier for printing Upint as a decimal]) # ---------------------------------------------------------------------------- # MPI_AINT datatype # ---------------------------------------------------------------------------- # Must be done after MPI_Aint type determination but before subconfigures. # convert to 2-char hex size case "$MPI_SIZEOF_AINT" in 4) len_mpi_aint=04 ;; 8) len_mpi_aint=08 ;; 16) len_mpi_aint=10 ;; *) AC_MSG_ERROR([Unable to convert MPI_SIZEOF_AINT to a hex string. This is either because we are building on a very strange platform or there is a bug somewhere in configure.]) ;; esac # MPI_AINT and MPI_OFFSET are already taken, appending a _DATATYPE suffix MPI_AINT_DATATYPE=0x4c00${len_mpi_aint}43 AC_SUBST(MPI_AINT_DATATYPE) export MPI_AINT_DATATYPE # 0x4c000043 is 1275068483 in decimal, add ($MPI_SIZEOF_AINT * 256) and you get # the decimal equivalent of the hex number MPI_F77_AINT=`expr 1275068483 '+' '(' 256 '*' $MPI_SIZEOF_AINT ')'` AC_SUBST(MPI_F77_AINT) export MPI_F77_AINT # ---------------------------------------------------------------------------- # define MPIU_Size_t - used to express the size of objects # This is used in src/include/mpitypedefs.h to define MPIU_SIZE_T, # and is used in various parts of ch3 and mpid/common/sock. # This is used to handle the potential problem that a message is # too long to fit with an int. However, we may still need to make # some more adjustments in the code (this may not be used everywhere # that it is needed). # # FIXME: this should really be in a util configure file, but we don't # have one at the moment # MPIU_SIZE_T="unsigned $MPI_AINT" AC_DEFINE_UNQUOTED(MPIU_SIZE_T,$MPIU_SIZE_T,[Set to a type that can express the size of the entire address space]) if test "$ac_cv_sizeof_void_p" -lt "$aint_size" ; then AC_DEFINE(USE_AINT_FOR_ATTRVAL,1,[Define if MPI_Aint should be used instead of void * for storing attribute values]) fi # # See if we need to update the timer type (which was converted to uppercase) if test "$timer_type" = "DEVICE" ; then # The device selected should export the datatype for the timer # in MPID_DEVICE_TIMER_TYPE if something other than long is needed if test -n "$MPID_DEVICE_TIMER_TYPE" ; then MPID_TIMER_TYPE=$MPID_DEVICE_TIMER_TYPE fi fi dnl Configure any subdirectories. Note that config.status will *not* dnl reexecute these! dnl Export any important variables first: dnl dnl Gastly problem. CONFIG_SUBDIRS only adds the directories to the dnl list of directories to be configured. It does NOT control the dnl timing of the configuration. For that, we must do something different. dnl Our original solution was to use a separate macro that does cause dnl immediate configure; this macro made use of the code that autoconf dnl uses to handle the subdir configure. However, later versions of dnl autoconf did this in a way that caused problems, paritcularly with dnl errors reported as inconsistent cache files. Instead, we simply dnl invoke the configure scripts (if present) directly. export AR export AR_FLAGS export RANLIB export MPILIBNAME export PMPILIBNAME export CC export CPPFLAGS export LIBS export CXX export CXXFLAGS export FFLAGS export CFLAGS export FCFLAGS export LDFLAGS # Make sure that any Fortran 77 and Fortran 90 compilers are exported to # the subdir builds (in particular, ROMIO may try to use the Fortran 90 # compiler to determine the Fortran 90 KINDS for MPI_OFFSET_KIND). export F77 export FC # # ----------------------------------------------------------------------------- # Configure threads first. This is necessary to obtain all required # definitions, flags, and libraries that the other subsystems will need # # # ----------------------------------------------------------------------------- MPIU_THREAD_DEFAULT=${MPIU_THREAD_DEFAULT:-posix} AC_ARG_WITH([thread-package], [ --with-thread-package=package Thread package to use. Supported thread packages include: posix or pthreads - POSIX threads solaris - Solaris threads (Solaris OS only) win - windows threads none - no threads If the option is not specified, the default package is ${MPIU_THREAD_DEFAULT}. If the option is specified, but a package is not given, then the default is posix ],,with_thread_package=${MPIU_THREAD_DEFAULT}) if test "$with_thread_package" = "yes" ; then with_thread_package=posix fi MPICH_THREAD_PACKAGE=none MPIU_THREAD_PACKAGE_NAME=MPIU_THREAD_PACKAGE_INVALID case $with_thread_package in posix|pthreads) with_thread_package=posix AC_CHECK_HEADERS(pthread.h) # If pthreads library is found, just include it on the link line. We don't try # to test if the C compiler needs it or not, since the C++ or Fortran # compilers might need it even if the C compiler doesn't # (nvcc with gfortran, for example). # # OSF1 has __pthread_create but not pthread_create (because of # inconsistencies in the pthread spec). Thus, we look for pthread_key_create AC_CHECK_LIB([pthread],[pthread_key_create],have_pthreads=yes) if test "$have_pthreads" = "yes" ; then PAC_PREPEND_FLAG([-lpthread],[LIBS]) fi AC_CHECK_FUNCS(pthread_yield) # this check should come after the AC_CHECK_LIB for -lpthread AC_CHECK_FUNC([pthread_key_create],[],[AC_MSG_ERROR([unable to find pthreads library])]) # Check for a routine that specify a routine to call on # thread exit. We can use this to release memory that may # be allocated by the MPICH library in the thread. # A complication: pthread_cleanup_push may be a macro; in that # case, check_funcs will fail to find it. # Under OSX, pthread_cleanup_push and pop are macros that must # appear together in the same lexical scope, and hence are # really useless in libraries that may allocate data within # a user-managed thread. AC_CHECK_FUNCS(pthread_cleanup_push) if test "$ac_cv_func_pthread_cleanup_push" = "no" ; then AC_CACHE_CHECK([whether pthread_cleanup_push is available (may be a macro in pthread.h)],pac_cv_func_pthread_cleanup_push,[ AC_TRY_LINK([ #include void f1(void *a) { return; }], [pthread_cleanup_push( f1, (void *)0 );], pac_cv_func_pthread_cleanup_push=yes, pac_cv_func_pthread_cleanup_push=no)]) if test "$pac_cv_func_pthread_cleanup_push" = yes ; then AC_DEFINE(HAVE_PTHREAD_CLEANUP_PUSH_MACRO,1,[Define if pthread_cleanup_push is available, even as a macro]) fi fi # Check for PTHREAD_MUTEX_RECURSIVE_NP and PTHREAD_MUTEX_RECURSIVE AC_CACHE_CHECK([whether pthread.h defines PTHREAD_MUTEX_RECURSIVE_NP], pac_cv_has_pthread_mutex_recursive_np,[ AC_TRY_COMPILE([#include ], [int a=PTHREAD_MUTEX_RECURSIVE_NP;], pac_cv_has_pthread_mutex_recursive_np=yes, pac_cv_has_pthread_mutex_recursive_np=no)]) AC_CACHE_CHECK([whether pthread.h defines PTHREAD_MUTEX_RECURSIVE], pac_cv_has_pthread_mutex_recursive,[ AC_TRY_COMPILE([#include ], [int a=PTHREAD_MUTEX_RECURSIVE;], pac_cv_has_pthread_mutex_recursive=yes, pac_cv_has_pthread_mutex_recursive=no)]) if test "$pac_cv_has_pthread_mutex_recursive_np" = yes ; then AC_DEFINE(HAVE_PTHREAD_MUTEX_RECURSIVE_NP,1,[Define if PTHREAD_MUTEX_RECURSIVE_NP is available in pthread.h]) fi if test "$pac_cv_has_pthread_mutex_recursive" = yes ; then AC_DEFINE(HAVE_PTHREAD_MUTEX_RECURSIVE,1,[Define if PTHREAD_MUTEX_RECURSIVE is available in pthread.h]) fi # Check for PTHREAD_MUTEX_ERRORCHECK_NP and PTHREAD_MUTEX_ERRORCHECK AC_CACHE_CHECK([whether pthread.h defines PTHREAD_MUTEX_ERRORCHECK_NP], pac_cv_has_pthread_mutex_errorcheck_np,[ AC_TRY_COMPILE([#include ], [int a=PTHREAD_MUTEX_ERRORCHECK_NP;], pac_cv_has_pthread_mutex_errorcheck_np=yes, pac_cv_has_pthread_mutex_errorcheck_np=no)]) AC_CACHE_CHECK([whether pthread.h defines PTHREAD_MUTEX_ERRORCHECK], pac_cv_has_pthread_mutex_errorcheck,[ AC_TRY_COMPILE([#include ], [int a=PTHREAD_MUTEX_ERRORCHECK;], pac_cv_has_pthread_mutex_errorcheck=yes, pac_cv_has_pthread_mutex_errorcheck=no)]) if test "$pac_cv_has_pthread_mutex_errorcheck" = yes ; then AC_DEFINE(PTHREAD_MUTEX_ERRORCHECK_VALUE,PTHREAD_MUTEX_ERRORCHECK, [Define to an expression that will result in an error checking mutex type.]) elif test "$pac_cv_has_pthread_mutex_errorcheck_np" = yes ; then AC_DEFINE(PTHREAD_MUTEX_ERRORCHECK_VALUE,PTHREAD_MUTEX_ERRORCHECK_NP, [Define to an expression that will result in an error checking mutex type.]) fi PAC_FUNC_NEEDS_DECL([#include ],pthread_mutexattr_settype) MPICH_THREAD_PACKAGE=pthreads MPIU_THREAD_PACKAGE_NAME=MPIU_THREAD_PACKAGE_POSIX ;; solaris) AC_CHECK_HEADERS(thread.h) AC_CHECK_FUNCS(thr_yield) AC_SEARCH_LIBS(thr_create,thread,found=yes,found=no) if test "$found" != "yes" ; then AC_MSG_ERROR([unable to find Solaris threads library]) fi # FIXME: need to add -mt if using solaris compilers MPICH_THREAD_PACKAGE=solaris MPIU_THREAD_PACKAGE_NAME=MPIU_THREAD_PACKAGE_SOLARIS ;; win|windows) with_thread_package=win MPICH2_THREAD_PACKAGE=win MPIU_THREAD_PACKAGE_NAME=MPIU_THREAD_PACKAGE_WIN AC_MSG_ERROR([The 'win' thread package is not supported via autoconf builds at this time.]) ;; no|none) with_thread_package=none MPIU_THREAD_PACKAGE_NAME=MPIU_THREAD_PACKAGE_NONE ;; *) AC_MSG_ERROR([The specified thread package, $with_thread_package, is not supported.]) ;; esac # Define and export the selected thread library so that other packages # know what's used in MPICH export MPICH_THREAD_PACKAGE AC_DEFINE_UNQUOTED([MPIU_THREAD_PACKAGE_NAME],[$MPIU_THREAD_PACKAGE_NAME],[set to the name of the thread package]) # check for compiler-support for thread-local storage (MPIU_TLS_SPECIFIER) AX_TLS AC_CHECK_FUNCS(getpid) # Choose a method to yield the procesor. # If the user specified a method to use, we check if it's available. # If a method was not specified, we make a guess based on the OS. The # default is to use sched_yield() or yield() if one is available, # otherwise, default to nothing. After that we define the appropriate # macro. AC_CHECK_HEADERS(sched.h) AC_CHECK_HEADERS(unistd.h) AC_CHECK_HEADERS(sys/select.h) AC_CHECK_FUNCS(sched_yield yield usleep sleep select) if test "$ac_cv_func_usleep" = "yes" ; then PAC_FUNC_NEEDS_DECL([#include ],usleep) fi AC_ARG_ENABLE([yield], [AS_HELP_STRING([--enable-yield], [choose a method to yield the processor in busy loops. Available methods are: sched_yield, yield, select, usleep, sleep, nothing])], [AS_CASE([$enableval], [sched_yield], [AS_IF([test "x$ac_cv_func_sched_yield" != "xyes"], [enable_yield=unavail])], [yield], [AS_IF([test "x$ac_cv_func_yield" != "xyes"], [enable_yield=unavail])], [select], [AS_IF([test "x$ac_cv_func_select" != "xyes"], [enable_yield=unavail])], [usleep], [AS_IF([test "x$ac_cv_func_usleep" != "xyes"], [enable_yield=unavail])], [sleep], [AS_IF([test "x$ac_cv_func_sleep" != "xyes"], [enable_yield=unavail])], [nothing|no|none], [], [AC_MSG_ERROR([Invalid option $enableval for --enable-yield])]) AS_IF([test "x$enable_yield" = "xunavail"], [AC_MSG_ERROR([Yield method $enableval is not available on this platform.])]) ], [# none specified by user; make a guess based on os AS_CASE([$host], [*-*-darwin*], [# In Lion, sched_yield worked but none of the other options had any effect AS_IF([test "x$ac_cv_func_sched_yield" = "xyes"], [enable_yield=sched_yield], [enable_yield=nothing])], [*-*-linux*], [# sched_yield() has been broken in linux since 2.6.23, and no good alternative exists. enable_yield=nothing], [# default: just use sched_yield() or yield() AS_IF([test "x$ac_cv_func_sched_yield" = "xyes"], [enable_yield=sched_yield], [test "x$ac_cv_func_yield" = "xyes"], [enable_yield=yield], [enable_yield=nothing])]) ] ) # set the appropriate macro AS_CASE([$enable_yield], [sched_yield], [AC_DEFINE(USE_SCHED_YIELD_FOR_YIELD,1,[Define to use sched_yield to yield processor])], [yield], [AC_DEFINE(USE_YIELD_FOR_YIELD,1,[Define to use yield to yield processor])], [select], [AC_DEFINE(USE_SELECT_FOR_YIELD,1,[Define to use select to yield processor])], [usleep], [AC_DEFINE(USE_USLEEP_FOR_YIELD,1,[Define to use usleep to yield processor])], [sleep], [AC_DEFINE(USE_SLEEP_FOR_YIELD,1,[Define to use sleep to yield processor])], [nothing|no|none], [AC_DEFINE(USE_NOTHING_FOR_YIELD,1,[Define to use nothing to yield processor])], [AC_MSG_ERROR([Invalid value $enable_yield for enable_yield.])] ) # Check for the Linux functions for controlling processor affinity. # LINUX: sched_setaffinity # AIX: bindprocessor # OSX (Leopard): thread_policy_set AC_CHECK_FUNCS(sched_setaffinity sched_getaffinity bindprocessor thread_policy_set) if test "$ac_cv_func_sched_setaffinity" = "yes" ; then # Test for the cpu process set type AC_CACHE_CHECK([whether cpu_set_t available],pac_cv_have_cpu_set_t,[ AC_TRY_COMPILE( [ #include ],[ cpu_set_t t; ],pac_cv_have_cpu_set_t=yes,pac_cv_have_cpu_set_t=no)]) if test "$pac_cv_have_cpu_set_t" = yes ; then AC_DEFINE(HAVE_CPU_SET_T,1,[Define if cpu_set_t is defined in sched.h]) AC_CACHE_CHECK([whether the CPU_SET and CPU_ZERO macros are defined], pac_cv_cpu_set_defined,[ AC_TRY_LINK( [ #include ],[ cpu_set_t t; CPU_ZERO(&t); CPU_SET(1,&t); ], pac_cv_cpu_set_defined=yes,pac_cv_cpu_set_defined=no)]) if test "$pac_cv_cpu_set_defined" = "yes" ; then AC_DEFINE(HAVE_CPU_SET_MACROS,1,[Define if CPU_SET and CPU_ZERO defined]) fi # FIXME: Some versions of sched_setaffinity return ENOSYS (!), # so we should test for the unfriendly and useless behavior fi fi if test "$ac_cv_func_thread_policy_set" = yes ; then AC_CACHE_CHECK([whether thread affinity macros defined], pac_cv_have_thread_affinity_policy,[ AC_TRY_COMPILE([#include ],[ #if !defined(THREAD_AFFINITY_POLICY) || !defined(THREAD_AFFINITY_TAG_NULL) :'thread macros not defined ],pac_cv_have_thread_affinity_policy=yes, pac_cv_have_thread_affinity_policy=no)]) if test "$pac_cv_have_thread_affinity_policy" = yes ; then AC_DEFINE(HAVE_OSX_THREAD_AFFINITY,1,[Define is the OSX thread affinity policy macros defined]) fi fi # ----------------------------------------------------------------------------- # End of thread configure # ----------------------------------------------------------------------------- # Checkpointing AC_ARG_ENABLE(checkpointing, [AC_HELP_STRING([--enable-checkpointing], [Enable application checkpointing])], [ if test "$enableval" != "no" ; then PAC_SET_HEADER_LIB_PATH(blcr) PAC_CHECK_HEADER_LIB_FATAL(blcr, libcr.h, cr, cr_init) AC_DEFINE(ENABLE_CHECKPOINTING,1,[Application checkpointing enabled]) fi ], ) # Update the cache first with the results of the previous configure steps # We don't use the subdir cache because ensuring that the cache is consistant # with the way in which configure wishes to use it is very difficult and # too prone to error. dnl PAC_SUBDIR_CACHE(always) # ----------------------------------------------------------------------------- # experiment with creating a cache file #if test "$CONF_USE_CACHEFILE" = yes ; then # basecachefile=`pwd`/cache.base # set | grep ac_cv > $basecachefile # # Tell other configures to load this file # echo "Creating and exporting the base cache file $basecachefile" # CONF_BASE_CACHEFILE=$basecachefile # export CONF_BASE_CACHEFILE #fi PAC_CREATE_BASE_CACHE # ----------------------------------------------------------------------------- # # Configure the device second. This way, any libraries or variables that # it needs can be extracted before building the other subsystems (this is # particularly important for the bindings, which may need to know the # libraries in order to create the compilation scripts) user_specified_atomic_primitives=no if test "$DEBUG_SUBDIR_CACHE" = yes ; then set -x fi dnl "configure" the device here via subconfigure.m4 files m4_map([PAC_SUBCFG_CONFIGURE_SUBSYS], [PAC_SUBCFG_MODULE_LIST]) # now configure any actual recursively configures subsystems, such as ROMIO and # hydra, or older components that haven't been updated to a subconfigure.m4 yet for subsys in $devsubsystems $subsystems ; do PAC_CONFIG_SUBDIR([$subsys],[],[AC_MSG_ERROR([$subsys configure failed])]) done if test "$DEBUG_SUBDIR_CACHE" = yes -a "$enable_echo" != yes ; then set +x fi dnl PAC_SUBDIR_CACHE_CLEANUP # Make subsystems available to makefiles. # FIXME does the makefile actually need this? subsystems="$devsubsystems $subsystems $bindingsubsystems" # Find the size of OPA_ptr_t. This step needs to come after the OPA # configure above in order to get the size OPA_ptr_t evaluated for # this platform. AC_CHECK_SIZEOF(OPA_ptr_t,0,[ #include "${master_top_srcdir}/src/openpa/src/opa_primitives.h" pthread_mutex_t *OPA_emulation_lock; ]) if test "$enable_f77" != "yes" ; then # These are Fortran datatypes ONLY. Set to null if no Fortran compiler. # Removed the invalid 2COMPLEX and 2DOUBLE_COMPLEX for name in CHARACTER INTEGER REAL LOGICAL COMPLEX DOUBLE_PRECISION \ 2INTEGER 2REAL DOUBLE_COMPLEX 2DOUBLE_PRECISION ; do fullname="MPI_$name" eval $fullname=MPI_DATATYPE_NULL done AC_MSG_WARN([Could not define Fortran MPI datatypes for C]) AC_DEFINE(HAVE_NO_FORTRAN_MPI_TYPES_IN_C,1,[Define if the Fortran types are not available in C]) # Temporary values for MPI_Fint (need help from the Fortran subsystem) MPI_FINT=int fi AC_SUBST(MPI_CHARACTER) AC_SUBST(MPI_INTEGER) AC_SUBST(MPI_REAL) AC_SUBST(MPI_LOGICAL) AC_SUBST(MPI_COMPLEX) AC_SUBST(MPI_DOUBLE_PRECISION) AC_SUBST(MPI_2INTEGER) AC_SUBST(MPI_2REAL) AC_SUBST(MPI_DOUBLE_COMPLEX) AC_SUBST(MPI_2DOUBLE_PRECISION) dnl AC_SUBST(MPI_2COMPLEX) dnl AC_SUBST(MPI_2DOUBLE_COMPLEX) AC_SUBST(MPI_FINT) # If ROMIO was successfully configured, then ROMIO will have exported the # definition of MPI_OFFSET_TYPE through its localdefs file (created by the # ROMIO configure in src/mpi/romio/localdefs). If MPI_OFFSET_TYPE was not # defined, this code attempts to find a good choice for MPI_OFFSET_TYPE # (As the offset type is used for File operations, the specific type # really doesn't matter if ROMIO doesn't provide it). if test -n "$MPI_OFFSET_TYPE" ; then # We got the value from the ROMIO configure MPI_OFFSET="$MPI_OFFSET_TYPE" # Get and export the size of this type if possible if test -z "$MPI_SIZEOF_OFFSET" ; then # set a default AC_CACHE_CHECK([the sizeof MPI_Offset],ac_cv_sizeof_MPI_Offset,[ ac_cv_sizeof_MPI_Offset=unknown AC_COMPUTE_INT([ac_cv_sizeof_MPI_Offset],[sizeof($MPI_OFFSET)],[],[ AC_MSG_WARN([Unable to determine the size of MPI_Offset]) ]) ]) if test "$ac_cv_sizeof_MPI_Offset" != "unknown" ; then MPI_SIZEOF_OFFSET=$ac_cv_sizeof_MPI_Offset fi fi export MPI_SIZEOF_OFFSET else # Make a guess at the appropriate definition for offset. Try to # find a 64bit type. if test "$ac_cv_sizeof_long" = 8 ; then MPI_OFFSET="long" # Make the size of this type available to other configures MPI_SIZEOF_OFFSET=8 elif test "$ac_cv_sizeof_long_long" = 8 ; then MPI_OFFSET="long long" # Make the size of this type available to other configures MPI_SIZEOF_OFFSET=8 else MPI_OFFSET=long MPI_SIZEOF_OFFSET=$ac_cv_sizeof_long fi export MPI_SIZEOF_OFFSET fi AC_SUBST(MPI_OFFSET) AS_CASE([$MPI_OFFSET], [int], [MPIR_OFFSET_MAX="INT_MAX"], [long], [MPIR_OFFSET_MAX="LONG_MAX"], ['long long'], [MPIR_OFFSET_MAX="LLONG_MAX"], [short], [MPIR_OFFSET_MAX="SHRT_MAX"], [AC_MSG_ERROR([unable to determine MPIR_OFFSET_MAX for MPI_Offset])]) AC_DEFINE_UNQUOTED([MPIR_OFFSET_MAX],[$MPIR_OFFSET_MAX],[limits.h _MAX constant for MPI_Offset]) # FIXME: we need an explanation of why we need both MPI_OFFSET and # MPI_OFFSET_TYPEDEF. Why is MPI_OFFSET_TYPEDEF necessary? # This appears to be used by the Windows "winconfigure.wsf" which is used # to create a multiline definition using an #ifdef check on USE_GCC # We may wish to use a different approach MPI_OFFSET_TYPEDEF="typedef $MPI_OFFSET MPI_Offset;" AC_SUBST(MPI_OFFSET_TYPEDEF) # # Fortran type for an Offset type (needed to define MPI_DISPLACEMENT_CURRENT # The value for this comes from ROMIO, and is needed in mpif.h.in # First, we check that this works with both Fortran compilers (if # they are defined) # # If there is no FORTRAN_MPI_OFFSET type (because ROMIO is disabled), # just use INTEGER if test -z "$FORTRAN_MPI_OFFSET" ; then FORTRAN_MPI_OFFSET=INTEGER fi if test "$enable_f77" = yes -a "$enable_fc" = yes ; then AC_LANG_PUSH([Fortran 77]) AC_MSG_CHECKING([whether the Fortran Offset type works with Fortran 77]) AC_COMPILE_IFELSE([ AC_LANG_PROGRAM([],[ $FORTRAN_MPI_OFFSET i]) ],[has_f77_offsettype=yes],[has_f77_offsetype=no]) AC_MSG_RESULT($has_f77_offsettype) AC_LANG_POP([Fortran 77]) AC_LANG_PUSH([Fortran]) AC_MSG_CHECKING([whether the Fortran Offset type works with Fortran 90]) AC_COMPILE_IFELSE([ AC_LANG_PROGRAM([],[ $FORTRAN_MPI_OFFSET i]) ],[has_fc_offsettype=yes],[has_fc_offsetype=no]) AC_LANG_POP([Fortran]) AC_MSG_RESULT($has_fc_offsettype) if test "$has_f77_offsettype" != yes -o "$has_fc_offsettype" != yes ; then AC_MSG_WARN([mpif.h is not compatible with both $F77 $FFLAGS and $FC $FCFLAGS. We recommend that you set both F77 and FC to the same compiler and reconfigure.]) fi fi AC_SUBST(FORTRAN_MPI_OFFSET) # # ---------------------------------------------------------------------------- # MPI_OFFSET datatype # ---------------------------------------------------------------------------- # must be done after ROMIO configure step case "$MPI_SIZEOF_OFFSET" in 4) len_mpi_offset=04 ;; 8) len_mpi_offset=08 ;; 16) len_mpi_offset=10 ;; *) AC_MSG_ERROR([Unable to convert MPI_SIZEOF_OFFSET to a hex string. This is either because we are building on a very strange platform or there is a bug somewhere in configure.]) ;; esac MPI_OFFSET_DATATYPE=0x4c00${len_mpi_offset}44 AC_SUBST(MPI_OFFSET_DATATYPE) export MPI_OFFSET_DATATYPE # 0x4c000044 is 1275068484 in decimal, add ($MPI_SIZEOF_OFFSET * 256) and you get # the decimal equivalent of the hex number MPI_F77_OFFSET=`expr 1275068484 '+' '(' 256 '*' $MPI_SIZEOF_OFFSET ')'` AC_SUBST(MPI_F77_OFFSET) export MPI_F77_OFFSET # ---------------------------------------------------------------------------- # MPI_COUNT datatype # ---------------------------------------------------------------------------- # quick sanity checking to avoid a bad test immediately below AS_IF([test -z "$MPI_SIZEOF_AINT"], [AC_MSG_ERROR([size of MPI_Aint is unknown at this stage])]) AS_IF([test -z "$MPI_SIZEOF_OFFSET"], [AC_MSG_ERROR([size of MPI_Offset is unknown at this stage])]) AS_IF([test "$MPI_SIZEOF_AINT" -gt "$MPI_SIZEOF_OFFSET"], [# an unlikely case, but I suppose it's theoretically possible MPI_COUNT="$MPI_AINT" COUNT_KIND="$ADDRESS_KIND" MPIR_COUNT_MAX="$MPIR_AINT_MAX" MPI_SIZEOF_COUNT="$MPI_SIZEOF_AINT"], [# don't bother checking whether Aint or Offset are larger than int, they # surely will be MPI_COUNT="$MPI_OFFSET" COUNT_KIND="$OFFSET_KIND" MPIR_COUNT_MAX="$MPIR_OFFSET_MAX" MPI_SIZEOF_COUNT="$MPI_SIZEOF_OFFSET"]) AC_SUBST([MPI_COUNT]) AC_SUBST([COUNT_KIND]) AC_DEFINE_UNQUOTED([MPIR_COUNT_MAX],[$MPIR_COUNT_MAX],[limits.h _MAX constant for MPI_Count]) AS_CASE([$MPI_SIZEOF_COUNT], [4], [len_mpi_count=04], [8], [len_mpi_count=08], [16],[len_mpi_count=10], [AC_MSG_ERROR([Unable to convert MPI_SIZEOF_COUNT to a hex string!])]) MPI_COUNT_DATATYPE=0x4c00${len_mpi_count}45 AC_SUBST([MPI_COUNT_DATATYPE]) # 0x4c000045 is 1275068485 in decimal, add ($MPI_SIZEOF_COUNT * 256) and you get # the decimal equivalent of the hex number MPI_F77_COUNT=`expr 1275068485 '+' '(' 256 '*' $MPI_SIZEOF_OFFSET ')'` AC_SUBST([MPI_F77_COUNT]) # ---------------------------------------------------------------------------- # # Set size of MPI_Status. Must come after MPI_Count determination. # # # The size of MPI_Status is needed for the Fortran interface. # This is not quite right unless the device prereq macro, expanded above, # sets the EXTRA_STATUS_DECL that will be used in defining a status. # # WARNING!!! this is a spot where we duplicate code from mpi.h.in and it *must* # be kept in sync in order to make a proper computation AC_CACHE_CHECK([for size of MPI_Status],[pac_cv_sizeof_mpi_status],[ dnl "double-quote" (in m4), otherwise you end up with a heinous bug because of dnl the array subscripting below [ rm -f pac_mpi_status.h cat > pac_mpi_status.h <<_EOF typedef struct { int MPI_SOURCE; int MPI_TAG; int MPI_ERROR; $MPI_COUNT count; int cancelled; int abi_slush_fund[2]; $EXTRA_STATUS_DECL } MPI_Status; _EOF ] dnl just compute it, since a 1s-complement or sign-and-magnitude machine is dnl *highly* unlikely. Users will report the error if it is ever dnl encountered, which will be safer than attempting some never-tested dnl default fallback. AC_COMPUTE_INT([pac_cv_sizeof_mpi_status], [sizeof(MPI_Status)], [#include "pac_mpi_status.h"], [AC_MSG_ERROR([unable to compute status size, are you compiling on a non-2s-complement host?])]) rm -f pac_mpi_status.h ]) SIZEOF_MPI_STATUS=$pac_cv_sizeof_mpi_status export SIZEOF_MPI_STATUS AC_SUBST([SIZEOF_MPI_STATUS]) if test "$enable_f77" = yes -a -z "$MPI_STATUS_SIZE" ; then if test -n "$SIZEOF_MPI_STATUS" ; then # compute from the C sizeof # Note that these *must* use the size of a Fortran INTEGER, # not a C int - as those two types might not be the same size. if test -z "$pac_cv_f77_sizeof_integer" ; then AC_MSG_ERROR([Sizeof Fortran INTEGER (MPI_Fint) is not available]) fi AS_VAR_ARITH([MPI_STATUS_SIZE],[$SIZEOF_MPI_STATUS / $pac_cv_f77_sizeof_integer]) if test "$MPI_STATUS_SIZE" = "0" ; then AC_MSG_ERROR([Could not compute the size of MPI_Status]) fi # sanity: otherwise we have a problem in Fortran where we must implement # MPI_STATUS as an array of INTEGERs with MPI_STATUS_SIZE elements AS_VAR_ARITH([status_int_rem],[$SIZEOF_MPI_STATUS '%' $ac_cv_sizeof_int]) AS_IF([test "$status_int_rem" -gt 0], [AC_MSG_ERROR([status size does not divide evenly by the integer size])]) AS_UNSET([status_int_rem]) else AC_MSG_ERROR([MPI_STATUS_SIZE was not defined!]) fi fi AC_SUBST([MPI_STATUS_SIZE]) MPIF_STATUS_SIZE=$MPI_STATUS_SIZE AC_DEFINE_UNQUOTED([MPIF_STATUS_SIZE],[$MPIF_STATUS_SIZE],[Size of an MPI_STATUS, in Fortran, in Fortran integers]) if test "$enable_f77" = yes ; then # Check if multiple __attribute__((alias)) is available # This test requires MPI_STATUS_SIZE, and thus must be made after # MPI_STATUS_SIZE is determined if test "$enable_multi_aliases" = "yes" ; then PAC_C_MULTI_ATTR_ALIAS if test "$pac_c_multi_attr_alias" = "yes" ; then PAC_F2C_ATTR_ALIGNED_SIZE([1],[CMB_1INT_ALIGNMENT]) AC_SUBST(CMB_1INT_ALIGNMENT) PAC_F2C_ATTR_ALIGNED_SIZE([$MPI_STATUS_SIZE],[CMB_STATUS_ALIGNMENT], [32]) AC_SUBST(CMB_STATUS_ALIGNMENT) if test "X$CMB_1INT_ALIGNMENT" != "X" \ -a "X$CMB_STATUS_ALIGNMENT" != "X" ; then AC_DEFINE(HAVE_C_MULTI_ATTR_ALIAS, 1, [Define if multiple __attribute__((alias)) are supported]) fi fi fi fi # ---------------------------------------------------------------------------- dnl Extra status information, from device subsystem, to be included in the dnl declaration of MPI_Status in mpi.h.in AC_SUBST(EXTRA_STATUS_DECL) dnl FIXME XXX DJG does this need to actually be conditional on something? dnl previously it was conditional on the successful execution of dnl "src/binding/f90/configure" but that would only fail if FC couldn't be dnl determined or a bad VPATH build env was detected AC_DEFINE(HAVE_FC_TYPE_ROUTINES,1,[Define if Fortran 90 type routines available]) # ----------------------------------------------------------------------------- # Get the value of MPI_MAX_PROCESSOR_NAME if test -z "$MPID_MAX_PROCESSOR_NAME" ; then if test -z "$MPI_MAX_PROCESSOR_NAME" ; then MPI_MAX_PROCESSOR_NAME=128 fi AC_MSG_WARN([The $with_device device did not set the maximum size of a processor name, $MPI_MAX_PROCESSOR_NAME being used.]) else MPI_MAX_PROCESSOR_NAME=$MPID_MAX_PROCESSOR_NAME fi AC_SUBST(MPI_MAX_PROCESSOR_NAME) # Get the value of MPI_MAX_LIBRARY_VERSION_STRING if test -z "$MPID_MAX_LIBRARY_VERSION_STRING" ; then MPI_MAX_LIBRARY_VERSION_STRING=8192 else MPI_MAX_LIBRARY_VERSION_STRING=$MPID_MAX_LIBRARY_VERSION_STRING fi AC_SUBST(MPI_MAX_LIBRARY_VERSION_STRING) # Get the value of MPI_MAX_ERROR_STRING if test -z "$MPID_MAX_ERROR_STRING" ; then if test -z "$MPI_MAX_ERROR_STRING" ; then MPI_MAX_ERROR_STRING=1024 fi AC_MSG_WARN([The $with_device device did not set the maximum size of an error string, $MPI_MAX_ERROR_STRING being used.]) else MPI_MAX_ERROR_STRING=$MPID_MAX_ERROR_STRING fi AC_SUBST(MPI_MAX_ERROR_STRING) # Get the value of libtool_static_flag if test ! -z "$MPID_LIBTOOL_STATIC_FLAG" ; then mpich_libtool_static_flag="$MPID_LIBTOOL_STATIC_FLAG" else mpich_libtool_static_flag="-static" fi AC_SUBST([mpich_libtool_static_flag]) # Add a definition that is used to help support Windows DLLs (used in mpi.h.in) MPIU_DLL_SPEC_DEF="#define MPIU_DLL_SPEC" AC_SUBST(MPIU_DLL_SPEC_DEF) dnl We can configure the test directory after the rest of the configure dnl steps because it does not depend on them. # set and export values that the test/mpi configure will reference to ensure # that the correct decisions are made since this configure happens before the # MPICH library is built. MPICH_ENABLE_CXX=$enable_cxx MPICH_ENABLE_F77=$enable_f77 MPICH_ENABLE_FC=$enable_fc export MPICH_ENABLE_CXX export MPICH_ENABLE_F77 export MPICH_ENABLE_FC AM_CONDITIONAL([BUILD_CXX_LIB],[test "$enable_cxx" = "yes"]) AM_CONDITIONAL([BUILD_F77_BINDING],[test "$enable_f77" = "yes"]) dnl FIXME DJG this has been moved to the f90 bindings subconfigure.m4 for now dnl AM_CONDITIONAL([BUILD_F90_LIB],[test "$enable_fc" = "yes"]) # MPI_SRCDIR gives the test/mpi configure the location of the source # files for an MPI implementation if test -n "$ac_abs_srcdir" ; then MPI_SRCDIR=$ac_abs_srcdir fi # Pass these two values with "MPI" names to the test configure MPI_NO_SPAWN=$MPID_NO_SPAWN export MPI_NO_SPAWN MPI_NO_RMA=$MPID_NO_RMA export MPI_NO_RMA AC_CONFIG_SUBDIRS([test/mpi]) dnl dnl Generate the Makefiles from Makefile.in dnl Also generate mpi.h from mpi.h.in so that we can eliminate all ifdefs dnl from the file. dnl dnl Run a setup command for any external modules (normally, this is empty) dnl Pass a subset of the environment to the invoked process. AC_OUTPUT_COMMANDS([ for prog in $EXTERNAL_SETUPS - ; do if test "$prog" != "-" ; then dir=`dirname $prog` name=`basename $prog` (cd $dir && ./$name) fi done],[ EXTERNAL_SETUPS="$EXTERNAL_SETUPS" LIBDIR="$libbuild_dir" MPILIBNAME="$MPILIBNAME" PMPILIBNAME="$PMPILIBNAME" AR="$AR" CC="$CC" CPPFLAGS="$CPPFLAGS" CFLAGS="$CFLAGS" export LIBDIR ; export MPILIBNAME ; export AR ; export CC ; export CPPFLAGS export PMPILIBNAME export CFLAGS # For test/mpi/configure MPI_SRCDIR=$MPI_SRCDIR MPI_NO_SPAWN=$MPID_NO_SPAWN export MPI_SRCDIR export MPI_NO_SPAWN ]) if test -z "$includebuild_dir" ; then includebuild_dir=`pwd`/src/include fi if test -z "$libbuild_dir" ; then libbuild_dir=`pwd`/lib fi if test -z "$modincbuild_dir" ; then # The include files may be in a different directory from the mpif.h file modincbuild_dir=`pwd`/src/binding/f90 fi dnl dnl If we rerun configure, place a file in the lib directory with the dnl date. We can use this to avoid rebuilding the library when dnl a build aborts due to an error (this is intended to help developers) AC_OUTPUT_COMMANDS([if [ ! -d lib ] ; then mkdir lib ; fi date > lib/newconfig]) AC_OUTPUT_COMMANDS([chmod a+x src/util/dbg/getfuncstack]) AC_OUTPUT_COMMANDS([chmod a+x test/commands/cmdtests]) AC_DEFINE(HAVE_MPICHCONF,1,[Define so that we can test whether the mpichconf.h file has been included]) # Add the LDFLAGS/LIBS we got so far to WRAPPERs WRAPPER_LDFLAGS="$WRAPPER_LDFLAGS $LDFLAGS" WRAPPER_LIBS="$WRAPPER_LIBS $LIBS" if test "$USE_PMI2_API" = "yes" ; then AC_DEFINE(USE_PMI2_API, 1, [Define if PMI2 API must be used]) fi ######################################################################## # cause libtool script to be built now so that we can use it to test one last # linking issue on Darwin LT_OUTPUT # see ticket #1590 for some more background on these Darwin linking issues if test "X$enable_shared" = "Xyes" ; then AS_CASE([$host], [*-*-darwin*], [ # sanity check that -Wl,-flat_namespace works on darwin, unless the user # asked us not to add it if test "X$enable_two_level_namespace" = "Xno"; then # TODO, move this into a PAC macro with real autoconf caching pac_cv_wl_flat_namespace_works=no AC_MSG_CHECKING([if the C compiler accepts -Wl,-flat_namespace]) PAC_PUSH_FLAG([LDFLAGS]) PAC_APPEND_FLAG([-Wl,-flat_namespace],[LDFLAGS]) AC_LINK_IFELSE([AC_LANG_PROGRAM([],[int i;])], [AC_MSG_RESULT([yes]) pac_cv_wl_flat_namespace_works=yes], [AC_MSG_RESULT([no])]) PAC_POP_FLAG([LDFLAGS]) # Technically we may not be able to use the same form of the argument # for all four compilers (CC/CXX/F77/FC). But we only think this is # necessary for Darwin for now, so this unconditional, single-var # approximation will work for now. if test "X$pac_cv_wl_flat_namespace_works" = "Xyes" ; then PAC_APPEND_FLAG([-Wl,-flat_namespace], [LDFLAGS]) PAC_APPEND_FLAG([-Wl,-flat_namespace], [WRAPPER_LDFLAGS]) fi fi # We only need to bother with -Wl,-commons,-use_dylibs if we are # building fortran bindings (no common block usage in our C libs). if test "X$enable_f77" = "Xyes" ; then # We also don't need this argument if flat_namespace is used. if test "X$enable_two_level_namespace" != "Xno" ; then # TODO, move this into a PAC macro with real autoconf caching pac_cv_wl_commons_use_dylibs_works=no AC_MSG_CHECKING([if the F77 compiler accepts -Wl,-commons,use_dylibs]) AC_LANG_PUSH([Fortran 77]) PAC_PUSH_FLAG([LDFLAGS]) PAC_APPEND_FLAG([-Wl,-commons,use_dylibs], [LDFLAGS]) AC_LINK_IFELSE([AC_LANG_PROGRAM([],[ INTEGER i])], [AC_MSG_RESULT([yes]) pac_cv_wl_commons_use_dylibs_works=yes], [AC_MSG_RESULT([no])]) PAC_POP_FLAG([LDFLAGS]) AC_LANG_POP([Fortran 77]) # Add the flag to the WRAPPER_LDFLAGS, since this common block issue # is really only a problem for dynamically linked user programs. # # Technically we may not be able to use the same form of the argument # for all four compilers (CC/CXX/F77/FC). But we only think this is # necessary for Darwin for now, so this unconditional, single-var # approximation will work for now. if test "X$pac_cv_wl_commons_use_dylibs_works" = "Xyes" ; then PAC_APPEND_FLAG([-Wl,-commons,use_dylibs], [WRAPPER_LDFLAGS]) fi fi fi ] ) fi ######################################################################## dnl This includes an experimental pkgconfig file for ch3 in the src/pkgconfig dnl directory AC_OUTPUT(Makefile \ examples/Makefile \ test/Makefile \ test/commands/Makefile \ src/include/mpichinfo.h \ mpich-doxygen \ src/include/glue_romio.h \ src/include/mpichtimer.h \ src/binding/cxx/mpicxx.h \ src/binding/f77/mpif.h \ src/binding/f77/setbotf.f \ src/binding/f77/setbot.c \ src/binding/f90/mpi_sizeofs.f90 \ src/binding/f90/mpi_base.f90 \ src/packaging/pkgconfig/mpich.pc \ src/packaging/envmods/mpich.module \ src/env/mpixxx_opts.conf \ src/env/mpicc.sh \ src/env/mpicc.conf \ src/env/mpicc.bash \ src/env/mpicxx.sh \ src/env/mpicxx.conf \ src/env/mpicxx.bash \ src/env/mpif77.sh \ src/env/mpif77.conf \ src/env/mpif77.bash \ src/env/mpif90.sh \ src/env/mpif90.conf \ src/env/mpif90.bash \ src/env/parkill \ src/util/dbg/getfuncstack \ src/include/mpi.h \ doc/design/Makefile \ doc/installguide/Makefile \ doc/logging/Makefile \ doc/refman/Makefile \ doc/smpd/Makefile \ doc/userguide/Makefile \ doc/windev/Makefile \ test/commands/cmdtests) echo 'Configuration completed.'